LiNbO3 dynamic memristors for reservoir computing

记忆电阻器 油藏计算 冯·诺依曼建筑 计算机科学 内存处理 人工神经网络 非线性系统 瓶颈 节点(物理) 非常规计算 计算机体系结构 分布式计算 电子工程 人工智能 嵌入式系统 循环神经网络 工程类 物理 量子力学 搜索引擎 情报检索 按示例查询 Web搜索查询 结构工程 操作系统
作者
Yuanxi Zhao,Wenrui Duan,Chen Wang,Shanpeng Xiao,Yuan Li,Yizheng Li,Jingkun An,Huanglong Li
出处
期刊:Frontiers in Neuroscience [Frontiers Media SA]
卷期号:17
标识
DOI:10.3389/fnins.2023.1177118
摘要

In conventional digital computers, data and information are represented in binary form and encoded in the steady states of transistors. They are then processed in a quasi-static way. However, with transistors approaching their physical limits and the von Neumann bottleneck, the rate of improvement in computing efficiency has slowed down. Therefore, drawing inspiration from the dynamic and adaptive properties of biological systems, research in neural morphology computing has great potential for development. Memristors, a class of nonlinear resistors with memory function, naturally embody dynamics through their internal electrical processes. This enables nonconventional computing paradigms with enhanced capability and energy efficiency, such as reservoir computing. In this paper, we propose a volatile memristor made of LiNbO3 with nonlinear I-V characteristics and short-term memory function. This memristor is well-suited to be used as a nonlinear node in the storage layer of reservoir computing. With this system, we can achieve the same functionality as traditional reservoir computing with a single device, instead of a large number of interconnected nodes. The collective states of memristors after the application of trains of pulses to the respective memristors are unique for each combination of pulse patterns. This provides a more reliable and efficient way for subsequent output layer classification processing. The system was successfully used to recognize images of Arabic numerals 0-9. This work not only broadens the application scope of materials such as lithium niobate in neural morphology computing but also provides new ideas for developing more efficient neural morphology devices and systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助四小时充足睡眠采纳,获得10
刚刚
oceanao应助否认冶游史采纳,获得10
1秒前
real季氢完成签到,获得积分10
2秒前
含糊的白安应助xiao金采纳,获得10
2秒前
3秒前
4秒前
whisper完成签到 ,获得积分10
5秒前
闪闪的星星完成签到,获得积分10
5秒前
我是老大应助LJJ采纳,获得10
6秒前
8秒前
李七七发布了新的文献求助10
10秒前
11秒前
充电宝应助Blake采纳,获得10
12秒前
12秒前
开朗雪巧完成签到,获得积分10
13秒前
蹦蹦完成签到,获得积分10
14秒前
阿凡人完成签到,获得积分10
14秒前
周子淦完成签到,获得积分10
15秒前
16秒前
星辰大海应助李敏之采纳,获得10
19秒前
20秒前
20秒前
21秒前
21秒前
嘻嘻完成签到,获得积分10
22秒前
xiaxiao完成签到,获得积分0
22秒前
22秒前
liang完成签到,获得积分20
22秒前
LJJ发布了新的文献求助10
23秒前
23秒前
27秒前
霏冉发布了新的文献求助10
27秒前
秦弼完成签到,获得积分10
28秒前
cccs发布了新的文献求助10
28秒前
30秒前
32秒前
华仔应助郎治宇采纳,获得10
32秒前
33秒前
34秒前
亮子完成签到,获得积分10
34秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161332
求助须知:如何正确求助?哪些是违规求助? 2812743
关于积分的说明 7896558
捐赠科研通 2471616
什么是DOI,文献DOI怎么找? 1316066
科研通“疑难数据库(出版商)”最低求助积分说明 631106
版权声明 602112