LiNbO3 dynamic memristors for reservoir computing

记忆电阻器 油藏计算 计算机科学 人工神经网络 石油工程 地质学 人工智能 循环神经网络 工程类 电气工程
作者
Yuanxi Zhao,Wenrui Duan,Chen Wang,Shanpeng Xiao,Yuan Li,Yizheng Li,Junwei An,Huanglong Li
出处
期刊:Frontiers in Neuroscience [Frontiers Media]
卷期号:17 被引量:3
标识
DOI:10.3389/fnins.2023.1177118
摘要

In conventional digital computers, data and information are represented in binary form and encoded in the steady states of transistors. They are then processed in a quasi-static way. However, with transistors approaching their physical limits and the von Neumann bottleneck, the rate of improvement in computing efficiency has slowed down. Therefore, drawing inspiration from the dynamic and adaptive properties of biological systems, research in neural morphology computing has great potential for development. Memristors, a class of nonlinear resistors with memory function, naturally embody dynamics through their internal electrical processes. This enables nonconventional computing paradigms with enhanced capability and energy efficiency, such as reservoir computing. In this paper, we propose a volatile memristor made of LiNbO3 with nonlinear I-V characteristics and short-term memory function. This memristor is well-suited to be used as a nonlinear node in the storage layer of reservoir computing. With this system, we can achieve the same functionality as traditional reservoir computing with a single device, instead of a large number of interconnected nodes. The collective states of memristors after the application of trains of pulses to the respective memristors are unique for each combination of pulse patterns. This provides a more reliable and efficient way for subsequent output layer classification processing. The system was successfully used to recognize images of Arabic numerals 0-9. This work not only broadens the application scope of materials such as lithium niobate in neural morphology computing but also provides new ideas for developing more efficient neural morphology devices and systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ruirchen完成签到,获得积分10
1秒前
小孩儿完成签到,获得积分10
1秒前
jingyi完成签到,获得积分10
2秒前
lfzw发布了新的文献求助10
2秒前
Jiao发布了新的文献求助10
2秒前
3秒前
爆米花应助踏实小蘑菇采纳,获得10
3秒前
4秒前
热心市民小红花应助4651132采纳,获得50
4秒前
orixero应助会飞的猪采纳,获得10
5秒前
yznfly应助heart采纳,获得30
5秒前
不想上学发布了新的文献求助20
6秒前
6秒前
慧有钱完成签到,获得积分20
7秒前
巧克力coco发布了新的文献求助10
8秒前
9秒前
Accept2024完成签到,获得积分10
9秒前
Jiao完成签到,获得积分10
9秒前
10秒前
10秒前
chuling发布了新的文献求助10
11秒前
11秒前
思源应助圆圆采纳,获得10
11秒前
QL应助剑履上殿采纳,获得50
12秒前
汉堡包应助一介书生采纳,获得10
12秒前
江苏彭于晏完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
yefeng完成签到,获得积分10
14秒前
14秒前
花生了什么树完成签到,获得积分10
14秒前
青青完成签到,获得积分10
14秒前
xing发布了新的文献求助10
15秒前
小蘑菇应助叶访云采纳,获得10
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
卿欣完成签到 ,获得积分10
15秒前
方向完成签到,获得积分10
15秒前
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961351
求助须知:如何正确求助?哪些是违规求助? 3507711
关于积分的说明 11137438
捐赠科研通 3240131
什么是DOI,文献DOI怎么找? 1790762
邀请新用户注册赠送积分活动 872504
科研通“疑难数据库(出版商)”最低求助积分说明 803271