亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Feature library-assisted surrogate model for evolutionary wrapper-based feature selection and classification

特征选择 计算机科学 特征(语言学) 水准点(测量) 人工智能 分类器(UML) 进化计算 模式识别(心理学) 灵活性(工程) 进化算法 人口 数据挖掘 机器学习 数学 统计 人口学 社会学 哲学 地理 语言学 大地测量学
作者
Hainan Guo,Jie Ma,Ruiqi Wang,Yu Zhou
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:139: 110241-110241
标识
DOI:10.1016/j.asoc.2023.110241
摘要

In recent years, wrapper-based feature selection (FS) using evolutionary algorithms has been widely studied due to its ability to search for and evaluate subsets of features based on populations. However, these methods often suffer from a high computational cost and a long computation time, mainly due to the process of evaluating the feature subsets according to the classification performance. In order to tackle this problem, this paper presents a feature library-assisted surrogate model (FL-SM), which aims to reduce the computational cost but maintain a good prediction accuracy. Unlike the existing surrogate models used in FS, the proposed method focuses on the feature level instead of the sample level: an FL is built by collecting the scores of all the features during the evolutionary search. Specifically, each solution (subset candidate) is pre-evaluated based on the FL using only simple operations to decide whether or not it deserves to be evaluated by the classifier, improving the efficiency of the FS algorithm. Meanwhile, because not evaluating a certain number of solutions may lead to inaccurate solution selection during the evolutionary search, dynamic individual selection criteria are proposed. In addition, an adaptive FL update operator is proposed to handle the dynamics of the evolved population; it ensures the real-time validity of the FL. Furthermore, we incorporate the proposed FL-SM into some state-of-the-art single- and multi-objective evolutionary FS methods. The experimental results on benchmark datasets show that with good flexibility and extendibility, FL-SM can effectively reduce the computational cost of wrapper-based FS and still obtain high-quality feature subsets. Among the five algorithms tested, the average computation time reduction was 34.87%; at the same time, there was no significant difference in the classification accuracy for 80% of the tests, and our method even improved the classification accuracy for 6% of the tests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jacs111发布了新的文献求助10
3秒前
Zjc0913完成签到 ,获得积分10
5秒前
libob完成签到,获得积分10
7秒前
Aaaaa发布了新的文献求助10
10秒前
jacs111完成签到,获得积分10
12秒前
xmqaq完成签到,获得积分10
12秒前
Orange应助科研通管家采纳,获得10
22秒前
领导范儿应助科研通管家采纳,获得10
22秒前
Aaaaa完成签到,获得积分20
23秒前
林利芳完成签到 ,获得积分0
25秒前
29秒前
流萤发布了新的文献求助30
32秒前
hwen1998完成签到 ,获得积分10
32秒前
鱼羊明完成签到 ,获得积分10
33秒前
tufei完成签到,获得积分10
36秒前
暮冬完成签到 ,获得积分10
41秒前
流萤完成签到,获得积分10
45秒前
瑞瑞刘完成签到 ,获得积分10
58秒前
土豪的摩托完成签到 ,获得积分10
1分钟前
z610938841完成签到,获得积分10
1分钟前
雨yu完成签到 ,获得积分10
1分钟前
张晓祁完成签到,获得积分10
1分钟前
yueying完成签到,获得积分10
1分钟前
1分钟前
脑洞疼应助邓邓采纳,获得10
1分钟前
1分钟前
笨蛋美女完成签到 ,获得积分10
1分钟前
1分钟前
Jason发布了新的文献求助10
1分钟前
邓邓发布了新的文献求助10
2分钟前
2分钟前
橘橘橘子皮完成签到 ,获得积分10
2分钟前
吃了吃了完成签到,获得积分10
2分钟前
2分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助霸气的金鱼采纳,获得10
2分钟前
Owen应助霸气的金鱼采纳,获得10
2分钟前
2分钟前
墨池完成签到,获得积分10
2分钟前
z610938841发布了新的文献求助10
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965642
求助须知:如何正确求助?哪些是违规求助? 3510896
关于积分的说明 11155529
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874161
科研通“疑难数据库(出版商)”最低求助积分说明 804214