已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Feature library-assisted surrogate model for evolutionary wrapper-based feature selection and classification

特征选择 计算机科学 特征(语言学) 水准点(测量) 人工智能 分类器(UML) 进化计算 模式识别(心理学) 灵活性(工程) 进化算法 人口 数据挖掘 机器学习 数学 统计 地理 社会学 大地测量学 人口学 语言学 哲学
作者
Hainan Guo,Jie Ma,Ruiqi Wang,Yu Zhou
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:139: 110241-110241
标识
DOI:10.1016/j.asoc.2023.110241
摘要

In recent years, wrapper-based feature selection (FS) using evolutionary algorithms has been widely studied due to its ability to search for and evaluate subsets of features based on populations. However, these methods often suffer from a high computational cost and a long computation time, mainly due to the process of evaluating the feature subsets according to the classification performance. In order to tackle this problem, this paper presents a feature library-assisted surrogate model (FL-SM), which aims to reduce the computational cost but maintain a good prediction accuracy. Unlike the existing surrogate models used in FS, the proposed method focuses on the feature level instead of the sample level: an FL is built by collecting the scores of all the features during the evolutionary search. Specifically, each solution (subset candidate) is pre-evaluated based on the FL using only simple operations to decide whether or not it deserves to be evaluated by the classifier, improving the efficiency of the FS algorithm. Meanwhile, because not evaluating a certain number of solutions may lead to inaccurate solution selection during the evolutionary search, dynamic individual selection criteria are proposed. In addition, an adaptive FL update operator is proposed to handle the dynamics of the evolved population; it ensures the real-time validity of the FL. Furthermore, we incorporate the proposed FL-SM into some state-of-the-art single- and multi-objective evolutionary FS methods. The experimental results on benchmark datasets show that with good flexibility and extendibility, FL-SM can effectively reduce the computational cost of wrapper-based FS and still obtain high-quality feature subsets. Among the five algorithms tested, the average computation time reduction was 34.87%; at the same time, there was no significant difference in the classification accuracy for 80% of the tests, and our method even improved the classification accuracy for 6% of the tests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
椿·完成签到 ,获得积分10
1秒前
黄毛虎完成签到 ,获得积分10
3秒前
fwda1000完成签到 ,获得积分10
4秒前
几米完成签到 ,获得积分10
6秒前
Enchanted完成签到 ,获得积分10
6秒前
纯真的血茗完成签到,获得积分10
8秒前
123完成签到 ,获得积分10
8秒前
李秋静完成签到,获得积分10
11秒前
勤劳的白晴完成签到,获得积分20
12秒前
14秒前
HAO完成签到,获得积分10
14秒前
务实的焦完成签到 ,获得积分10
14秒前
15秒前
16秒前
毛聋聋完成签到 ,获得积分10
16秒前
liway完成签到 ,获得积分10
17秒前
武勇发布了新的文献求助10
18秒前
学术界中的一条小咸鱼完成签到,获得积分10
19秒前
伶俐断天完成签到,获得积分10
19秒前
虚幻沛菡完成签到 ,获得积分10
20秒前
SCT完成签到,获得积分10
22秒前
结实的涵柏完成签到 ,获得积分10
23秒前
xx完成签到,获得积分10
23秒前
shime完成签到,获得积分10
24秒前
youngyang完成签到 ,获得积分10
24秒前
活力的小猫咪完成签到 ,获得积分10
24秒前
大模型应助文天采纳,获得10
24秒前
自信放光芒~完成签到 ,获得积分10
28秒前
可爱的函函应助summer采纳,获得10
31秒前
布可完成签到,获得积分10
31秒前
32秒前
星希完成签到 ,获得积分10
35秒前
lxy完成签到,获得积分10
38秒前
追梦发布了新的文献求助10
38秒前
万木春完成签到 ,获得积分10
38秒前
gladuhere完成签到 ,获得积分10
39秒前
nenoaowu完成签到,获得积分10
39秒前
Omni完成签到,获得积分10
41秒前
敏感的百招完成签到,获得积分10
45秒前
ghan完成签到 ,获得积分10
46秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310979
求助须知:如何正确求助?哪些是违规求助? 2943803
关于积分的说明 8516399
捐赠科研通 2619072
什么是DOI,文献DOI怎么找? 1431987
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649782