清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Feature library-assisted surrogate model for evolutionary wrapper-based feature selection and classification

特征选择 计算机科学 特征(语言学) 水准点(测量) 人工智能 分类器(UML) 进化计算 模式识别(心理学) 灵活性(工程) 进化算法 人口 数据挖掘 机器学习 数学 统计 人口学 社会学 哲学 地理 语言学 大地测量学
作者
Hainan Guo,Junnan Ma,Ruiqi Wang,Yu Zhou
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:139: 110241-110241 被引量:5
标识
DOI:10.1016/j.asoc.2023.110241
摘要

In recent years, wrapper-based feature selection (FS) using evolutionary algorithms has been widely studied due to its ability to search for and evaluate subsets of features based on populations. However, these methods often suffer from a high computational cost and a long computation time, mainly due to the process of evaluating the feature subsets according to the classification performance. In order to tackle this problem, this paper presents a feature library-assisted surrogate model (FL-SM), which aims to reduce the computational cost but maintain a good prediction accuracy. Unlike the existing surrogate models used in FS, the proposed method focuses on the feature level instead of the sample level: an FL is built by collecting the scores of all the features during the evolutionary search. Specifically, each solution (subset candidate) is pre-evaluated based on the FL using only simple operations to decide whether or not it deserves to be evaluated by the classifier, improving the efficiency of the FS algorithm. Meanwhile, because not evaluating a certain number of solutions may lead to inaccurate solution selection during the evolutionary search, dynamic individual selection criteria are proposed. In addition, an adaptive FL update operator is proposed to handle the dynamics of the evolved population; it ensures the real-time validity of the FL. Furthermore, we incorporate the proposed FL-SM into some state-of-the-art single- and multi-objective evolutionary FS methods. The experimental results on benchmark datasets show that with good flexibility and extendibility, FL-SM can effectively reduce the computational cost of wrapper-based FS and still obtain high-quality feature subsets. Among the five algorithms tested, the average computation time reduction was 34.87%; at the same time, there was no significant difference in the classification accuracy for 80% of the tests, and our method even improved the classification accuracy for 6% of the tests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得30
2秒前
馆长举报violin求助涉嫌违规
9秒前
21秒前
馆长举报KK求助涉嫌违规
23秒前
林夕完成签到 ,获得积分10
27秒前
tutu完成签到,获得积分10
36秒前
hunajx完成签到,获得积分10
40秒前
馆长举报阿良求助涉嫌违规
57秒前
馆长举报马也君求助涉嫌违规
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
馆长举报无语的玉米求助涉嫌违规
1分钟前
快乐学习每一天完成签到 ,获得积分10
1分钟前
菠萝包完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
gege完成签到,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
馆长举报英吉利25求助涉嫌违规
4分钟前
馆长举报四月求助涉嫌违规
5分钟前
5分钟前
5分钟前
顺利的雁梅完成签到 ,获得积分10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
6分钟前
6分钟前
6分钟前
两个榴莲完成签到,获得积分0
6分钟前
6分钟前
RLLLLLLL完成签到 ,获得积分10
6分钟前
7分钟前
yangxi发布了新的文献求助10
7分钟前
研友_VZG7GZ应助yangxi采纳,获得10
7分钟前
yangxi完成签到,获得积分10
7分钟前
7分钟前
7分钟前
8分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596449
求助须知:如何正确求助?哪些是违规求助? 4008332
关于积分的说明 12409129
捐赠科研通 3687356
什么是DOI,文献DOI怎么找? 2032344
邀请新用户注册赠送积分活动 1065591
科研通“疑难数据库(出版商)”最低求助积分说明 950877