Machine Learning Technique Reveals Intrinsic EEG Connectivity Characteristics of Patients With Mild Stroke During Cognitive Task Performing

计算机科学 脑电图 任务(项目管理) 认知 认知心理学 人工智能 神经科学 心理学 管理 经济
作者
Mengru Xu,Feng Zhao,Sujie Wang,Hui Gao,Jiaye Cai,Biwen Wu,Huaying Cai,Yi Sun,Cuntai Guan,Yu Sun,Xuchen Qi
出处
期刊:IEEE Transactions on Cognitive and Developmental Systems [Institute of Electrical and Electronics Engineers]
卷期号:16 (1): 232-242 被引量:3
标识
DOI:10.1109/tcds.2023.3260081
摘要

Although convergent evidence has shown that patients with mild stroke (MS) are commonly accompanied by post-stroke cognitive and/or memory impairment, only disproportionate attention was paid compared to severe stroke. To promote post-stroke management for early intervention in MS-related cognitive impairment, a feasible and convenient method for MS detection is, therefore, favorable. A data-driven classification framework combined with quantitative graph theoretical analysis was introduced in this work, aiming to provide a comprehensive appreciation of MS-related brain network alterations. EEG functional connectivity (FC) was constructed from 45 patients with MS and 45 healthy participants during two cognitive tasks (i.e., visual and auditory oddball) and set as input for the classification model and graph theoretical analysis. As expected, patients showed significantly reduced behavioral performance in both tasks. Furthermore, we achieved a satisfactory classification accuracy of 88.9% with a decision fusion strategy from classification models of both tasks. The spatiospectral characteristics of the discriminative FC revealed complex topological distributions in both tasks. Moreover, significantly decreased global efficiency was found, suggesting an MS-related disruption in parallel information processing. Overall, these results demonstrated the potential of FC as salient biomarkers for detecting MS, and extended our understanding of the underlying MS-related neural mechanisms during cognitive processing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助ellie0125采纳,获得10
刚刚
缥缈奇迹完成签到,获得积分10
1秒前
科研通AI2S应助gumausi采纳,获得10
1秒前
温暖涫完成签到,获得积分10
2秒前
骑羊发布了新的文献求助10
2秒前
Ava应助大苏打采纳,获得10
2秒前
桐桐应助qp采纳,获得10
2秒前
3秒前
LUNWENREQUEST完成签到,获得积分20
3秒前
4秒前
大个应助诚心谷南采纳,获得10
5秒前
5秒前
傅逊发布了新的文献求助30
5秒前
温暖涫发布了新的文献求助10
5秒前
脑洞疼应助犹豫的忆梅采纳,获得10
6秒前
6秒前
luofeiyu完成签到,获得积分10
7秒前
9秒前
研友_VZG7GZ应助梅子黄时雨采纳,获得10
9秒前
9秒前
zh_li完成签到,获得积分10
9秒前
qp完成签到,获得积分10
10秒前
10秒前
研友_VZG7GZ应助lmj采纳,获得50
10秒前
JamesPei应助gumausi采纳,获得10
11秒前
11秒前
科研通AI5应助fox199753206采纳,获得10
11秒前
gang发布了新的文献求助10
12秒前
润润润发布了新的文献求助10
13秒前
LU完成签到 ,获得积分10
13秒前
13秒前
13秒前
15秒前
鲤鱼幼翠发布了新的文献求助10
15秒前
15秒前
再见理想发布了新的文献求助10
15秒前
16秒前
Frank发布了新的文献求助10
16秒前
zhsy发布了新的文献求助10
16秒前
harrybz完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3560985
求助须知:如何正确求助?哪些是违规求助? 3134744
关于积分的说明 9409650
捐赠科研通 2834980
什么是DOI,文献DOI怎么找? 1558372
邀请新用户注册赠送积分活动 728097
科研通“疑难数据库(出版商)”最低求助积分说明 716686