已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MLATE: Machine learning for predicting cell behavior on cardiac tissue engineering scaffolds

组织工程 计算机科学 机器学习 人工智能 生物医学工程 工程类
作者
Saeed Rafieyan,Ebrahim Vasheghani‐Farahani,Nafiseh Baheiraei,Hamidreza Keshavarz
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:158: 106804-106804 被引量:19
标识
DOI:10.1016/j.compbiomed.2023.106804
摘要

Cardiovascular disease is one of the leading causes of mortality worldwide and is responsible for millions of deaths annually. One of the most promising approaches to deal with this problem, which has spread recently, is cardiac tissue engineering (CTE). Many researchers have tried developing scaffolds with different materials, cell lines, and fabrication methods to help regenerate heart tissue. Machine learning (ML) is one of the hottest topics in science and technology, revolutionizing many fields and changing our perspective on solving problems. As a result of using ML, some scientific issues have been resolved, including protein-folding, a challenging problem in biology that remained unsolved for 50 years. However, it is not well addressed in tissue engineering. An AI-based software was developed by our group called MLATE (Machine Learning Applications in Tissue Engineering) to tackle tissue engineering challenges, which highly depend on conducting costly and time-consuming experiments. For the first time, to the best of our knowledge, a CTE scaffold dataset was created by collecting specifications from the literature, including different materials, cell lines, and fabrication methods commonly used in CTE scaffold development. These specifications were used as variables in the study. Then, the CTE scaffolds were rated based on cell behaviors such as cell viability, growth, proliferation, and differentiation on the scaffold on a scale of 0-3. These ratings were considered a function of the variables in the gathered dataset. It should be stated that this study was merely based on information available in the literature. Then, twenty-eight ML algorithms were applied to determine the most effective one for predicting cell behavior on CTE scaffolds fabricated by different materials, compositions, and methods. The results indicated the high performance of XGBoost with an accuracy of 87%. Also, by implementing ensemble learning algorithms and using five algorithms with the best performance, an accuracy of 93% with the AdaBoost Classifier and Voting Classifier was achieved. Finally, the open-source software developed in this study was made available for everyone by publishing the best model along with a step-by-step guide to using it online at: https://github.com/saeedrafieyan/MLATE.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wch666完成签到,获得积分10
1秒前
0717完成签到,获得积分10
2秒前
天宇南神完成签到 ,获得积分10
2秒前
Xx完成签到 ,获得积分10
4秒前
平淡诗柳发布了新的文献求助10
7秒前
梁凤炜完成签到,获得积分10
8秒前
CodeCraft应助清风采纳,获得10
8秒前
唐若冰完成签到,获得积分10
11秒前
七七完成签到 ,获得积分10
12秒前
万能图书馆应助Su采纳,获得10
24秒前
百宝驳回了Jasper应助
26秒前
eriphin完成签到,获得积分10
26秒前
打打应助渴望者采纳,获得10
29秒前
畅快的发箍完成签到,获得积分10
29秒前
姜姗完成签到 ,获得积分10
31秒前
lzy完成签到,获得积分10
33秒前
33秒前
34秒前
在巨人的肩膀上眺望远方完成签到,获得积分10
41秒前
amanda完成签到,获得积分10
43秒前
芒果完成签到 ,获得积分10
46秒前
46秒前
48秒前
48秒前
yyds应助科研通管家采纳,获得160
51秒前
顾矜应助科研通管家采纳,获得10
51秒前
爆米花应助科研通管家采纳,获得10
52秒前
反恐分子应助科研通管家采纳,获得10
52秒前
情怀应助科研通管家采纳,获得10
52秒前
52秒前
呼延水云发布了新的文献求助10
53秒前
55秒前
Broadway Zhang完成签到,获得积分10
55秒前
兼听则明应助cai采纳,获得50
56秒前
乐空思应助淡定秀发采纳,获得20
58秒前
情怀应助不爱胡萝卜采纳,获得10
1分钟前
爱吃橙子完成签到 ,获得积分10
1分钟前
111完成签到 ,获得积分10
1分钟前
1分钟前
大学生完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606500
求助须知:如何正确求助?哪些是违规求助? 4690888
关于积分的说明 14866511
捐赠科研通 4706081
什么是DOI,文献DOI怎么找? 2542717
邀请新用户注册赠送积分活动 1508129
关于科研通互助平台的介绍 1472276