亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

miProBERT: identification of microRNA promoters based on the pre-trained model BERT

发起人 计算生物学 基因预测 小RNA 计算机科学 判别式 基因 生物 人工智能 遗传学 基因表达 基因组
作者
Xin Wang,Xin Gao,Guohua Wang,Dan Li
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (3) 被引量:6
标识
DOI:10.1093/bib/bbad093
摘要

Abstract Accurate prediction of promoter regions driving miRNA gene expression has become a major challenge due to the lack of annotation information for pri-miRNA transcripts. This defect hinders our understanding of miRNA-mediated regulatory networks. Some algorithms have been designed during the past decade to detect miRNA promoters. However, these methods rely on biosignal data such as CpG islands and still need to be improved. Here, we propose miProBERT, a BERT-based model for predicting promoters directly from gene sequences without using any structural or biological signals. According to our information, it is the first time a BERT-based model has been employed to identify miRNA promoters. We use the pre-trained model DNABERT, fine-tune the pre-trained model on the gene promoter dataset so that the model includes information about the richer biological properties of promoter sequences in its representation, and then systematically scan the upstream regions of each intergenic miRNA using the fine-tuned model. About, 665 miRNA promoters are found. The innovative use of a random substitution strategy to construct a negative dataset improves the discriminative ability of the model and further reduces the false positive rate (FPR) to as low as 0.0421. On independent datasets, miProBERT outperformed other gene promoter prediction methods. With comparison on 33 experimentally validated miRNA promoter datasets, miProBERT significantly outperformed previously developed miRNA promoter prediction programs with 78.13% precision and 75.76% recall. We further verify the predicted promoter regions by analyzing conservation, CpG content and histone marks. The effectiveness and robustness of miProBERT are highlighted.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优美紫槐发布了新的文献求助10
1秒前
Criminology34举报高兴电脑求助涉嫌违规
5秒前
dida完成签到,获得积分10
13秒前
CipherSage应助lemon采纳,获得10
13秒前
陶醉的烤鸡完成签到 ,获得积分10
13秒前
13秒前
张子捷应助精明葶采纳,获得10
14秒前
17秒前
菲1208完成签到,获得积分10
20秒前
三三完成签到 ,获得积分0
22秒前
rwq完成签到 ,获得积分10
23秒前
慕青应助优美紫槐采纳,获得10
23秒前
英姑应助11111采纳,获得10
26秒前
刘瑞吉完成签到,获得积分10
28秒前
666完成签到,获得积分20
31秒前
35秒前
向北游完成签到 ,获得积分10
36秒前
36秒前
大模型应助段dwh采纳,获得10
39秒前
42秒前
11111发布了新的文献求助10
43秒前
46秒前
归去来兮发布了新的文献求助10
47秒前
48秒前
英姑应助旺拽硫乃采纳,获得10
49秒前
Cumin完成签到 ,获得积分10
51秒前
量子星尘发布了新的文献求助10
53秒前
段dwh发布了新的文献求助10
53秒前
59秒前
1分钟前
1分钟前
大刘完成签到,获得积分10
1分钟前
1分钟前
lemon完成签到,获得积分10
1分钟前
无限火龙果完成签到,获得积分10
1分钟前
lemon发布了新的文献求助10
1分钟前
归去来兮发布了新的文献求助10
1分钟前
1分钟前
清脆天蓉完成签到,获得积分10
1分钟前
666发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595661
求助须知:如何正确求助?哪些是违规求助? 4680904
关于积分的说明 14818037
捐赠科研通 4651473
什么是DOI,文献DOI怎么找? 2535551
邀请新用户注册赠送积分活动 1503527
关于科研通互助平台的介绍 1469754