miProBERT: identification of microRNA promoters based on the pre-trained model BERT

发起人 计算生物学 基因预测 小RNA 计算机科学 判别式 基因 生物 人工智能 遗传学 基因表达 基因组
作者
Xin Wang,Xin Gao,Guohua Wang,Dan Li
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (3)
标识
DOI:10.1093/bib/bbad093
摘要

Accurate prediction of promoter regions driving miRNA gene expression has become a major challenge due to the lack of annotation information for pri-miRNA transcripts. This defect hinders our understanding of miRNA-mediated regulatory networks. Some algorithms have been designed during the past decade to detect miRNA promoters. However, these methods rely on biosignal data such as CpG islands and still need to be improved. Here, we propose miProBERT, a BERT-based model for predicting promoters directly from gene sequences without using any structural or biological signals. According to our information, it is the first time a BERT-based model has been employed to identify miRNA promoters. We use the pre-trained model DNABERT, fine-tune the pre-trained model on the gene promoter dataset so that the model includes information about the richer biological properties of promoter sequences in its representation, and then systematically scan the upstream regions of each intergenic miRNA using the fine-tuned model. About, 665 miRNA promoters are found. The innovative use of a random substitution strategy to construct a negative dataset improves the discriminative ability of the model and further reduces the false positive rate (FPR) to as low as 0.0421. On independent datasets, miProBERT outperformed other gene promoter prediction methods. With comparison on 33 experimentally validated miRNA promoter datasets, miProBERT significantly outperformed previously developed miRNA promoter prediction programs with 78.13% precision and 75.76% recall. We further verify the predicted promoter regions by analyzing conservation, CpG content and histone marks. The effectiveness and robustness of miProBERT are highlighted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Biao完成签到,获得积分10
刚刚
21GolDiamond完成签到,获得积分10
1秒前
小马哥完成签到,获得积分20
1秒前
3秒前
含糊的问寒完成签到,获得积分10
3秒前
4秒前
海潮发布了新的文献求助10
4秒前
李健应助神雕侠采纳,获得10
4秒前
4秒前
6秒前
彭于晏应助波酱采纳,获得10
8秒前
haowu发布了新的文献求助10
8秒前
lin发布了新的文献求助10
11秒前
12秒前
山阴路没有夏天完成签到,获得积分10
14秒前
极品小亮发布了新的文献求助10
14秒前
15秒前
yiyilinlin完成签到,获得积分10
15秒前
Fan完成签到,获得积分10
16秒前
16秒前
17秒前
笑点低的白莲完成签到,获得积分10
17秒前
18秒前
鲤鱼初柳发布了新的文献求助10
19秒前
20秒前
纯真黄蜂关注了科研通微信公众号
21秒前
懒癌晚期完成签到,获得积分10
23秒前
圆圆方方发布了新的文献求助10
25秒前
25秒前
小白完成签到 ,获得积分10
27秒前
星辰大海应助YY采纳,获得30
30秒前
30秒前
123发布了新的文献求助10
32秒前
狂野的罡发布了新的文献求助10
33秒前
34秒前
共享精神应助sy采纳,获得10
36秒前
打打应助yin采纳,获得10
36秒前
开朗孤兰完成签到 ,获得积分10
39秒前
39秒前
慕青应助鲤鱼初柳采纳,获得10
41秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157455
求助须知:如何正确求助?哪些是违规求助? 2808877
关于积分的说明 7878686
捐赠科研通 2467233
什么是DOI,文献DOI怎么找? 1313279
科研通“疑难数据库(出版商)”最低求助积分说明 630380
版权声明 601919