miProBERT: identification of microRNA promoters based on the pre-trained model BERT

发起人 计算生物学 基因预测 小RNA 计算机科学 判别式 基因 生物 人工智能 遗传学 基因表达 基因组
作者
Xin Wang,Xin Gao,Guohua Wang,Dan Li
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (3) 被引量:6
标识
DOI:10.1093/bib/bbad093
摘要

Abstract Accurate prediction of promoter regions driving miRNA gene expression has become a major challenge due to the lack of annotation information for pri-miRNA transcripts. This defect hinders our understanding of miRNA-mediated regulatory networks. Some algorithms have been designed during the past decade to detect miRNA promoters. However, these methods rely on biosignal data such as CpG islands and still need to be improved. Here, we propose miProBERT, a BERT-based model for predicting promoters directly from gene sequences without using any structural or biological signals. According to our information, it is the first time a BERT-based model has been employed to identify miRNA promoters. We use the pre-trained model DNABERT, fine-tune the pre-trained model on the gene promoter dataset so that the model includes information about the richer biological properties of promoter sequences in its representation, and then systematically scan the upstream regions of each intergenic miRNA using the fine-tuned model. About, 665 miRNA promoters are found. The innovative use of a random substitution strategy to construct a negative dataset improves the discriminative ability of the model and further reduces the false positive rate (FPR) to as low as 0.0421. On independent datasets, miProBERT outperformed other gene promoter prediction methods. With comparison on 33 experimentally validated miRNA promoter datasets, miProBERT significantly outperformed previously developed miRNA promoter prediction programs with 78.13% precision and 75.76% recall. We further verify the predicted promoter regions by analyzing conservation, CpG content and histone marks. The effectiveness and robustness of miProBERT are highlighted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助361采纳,获得10
刚刚
1秒前
gogoyoco发布了新的文献求助10
1秒前
sssssnake发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
激情的代曼完成签到,获得积分10
3秒前
西哥发布了新的文献求助10
3秒前
3秒前
浮游应助zihaolee采纳,获得10
3秒前
4秒前
5秒前
上官若男应助美满向薇采纳,获得10
6秒前
6秒前
6秒前
7秒前
高兴的幻竹完成签到,获得积分10
7秒前
魏冉完成签到,获得积分10
7秒前
8秒前
铱铂发布了新的文献求助10
8秒前
宫阙发布了新的文献求助10
8秒前
在水一方应助yangmi采纳,获得10
8秒前
齐甲雯发布了新的文献求助30
8秒前
粥粥发布了新的文献求助10
9秒前
vetXue完成签到,获得积分10
9秒前
诸葛藏藏完成签到,获得积分10
9秒前
鱼鱼鱼发布了新的文献求助10
9秒前
深情安青应助drleslie采纳,获得30
10秒前
坐忘道完成签到 ,获得积分10
10秒前
10秒前
菜菜发布了新的文献求助20
10秒前
zxzxzz发布了新的文献求助10
11秒前
Li完成签到,获得积分10
12秒前
12秒前
俏皮的芝麻完成签到,获得积分10
13秒前
领导范儿应助LL采纳,获得10
13秒前
浮游应助powerfuled采纳,获得10
14秒前
丘比特应助supin采纳,获得10
14秒前
小二郎应助铱铂采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4884869
求助须知:如何正确求助?哪些是违规求助? 4169926
关于积分的说明 12939631
捐赠科研通 3930555
什么是DOI,文献DOI怎么找? 2156644
邀请新用户注册赠送积分活动 1175079
关于科研通互助平台的介绍 1079700