已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Simulation-based optimization of large-scale dedicated bus lanes allocation: Using efficient machine learning models as surrogates

计算机科学 估计员 比例(比率) 刀切重采样 过程(计算) 数学优化 数学 量子力学 统计 操作系统 物理
作者
Zheng Li,Ye Tian,Jian Sun,Xi Lu,Yuheng Kan
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:143: 103827-103827
标识
DOI:10.1016/j.trc.2022.103827
摘要

• Proposed a quantitative simulation-based optimization framework to allocate dedicated bus lanes across large-scale networks. • Utilized efficient Machine learning-based surrogates and jackknife uncertainty estimators to improve the efficiency of simulation-based optimization. • Applied a mesoscopic simulation and dynamic traffic assignment tool to capture traffic dynamics and travelers’ choices. • Tested the efficient simulation-based dedicated bus lanes allocation framework with an actual large-scale network in Guiyang, Guizhou Province, China. Dedicated Bus Lanes (DBLs) have been implemented in many cities to boost buses’ reliability and to alleviate traffic congestions. However, how to correctly allocate DBLs across a large-scale real-world network is challenging. Simulation-Based Optimization (SBO) methods were utilized in this work to resolve this optimal allocation problem. Traditional discrete SBO methods are intractable when handling high-dimensional, costly, simulation-based Transportation Network Design Problems (TNDPs) using a limited computational budget. Thus, several efficient Machine Learning (ML)-based surrogate models and a Jackknife uncertainty estimator were introduced to existing SBO framework in this work. A number of comparative experiments between proposed methods and frequently-used Gaussian Process (GP)-SBO methods were conducted. A mesoscopic simulation and Dynamic Traffic Assignment (DTA) tool was adopted to evaluate the network performance. The results of numerical studies show that the optimization efficiency of proposed method is significantly higher than that of commonly used GP-based method when dealing with high dimensional problems. A real-world DBLs allocation case study in Guiyang, Guizhou Province, China again proves that efficient ML-based SBO method is capable to take much less CPU runtime to obtain a better solution than traditional method. The optimal DBLs allocation scheme found by one of the efficient ML-based methods raises the network performance by 5.05 %. A total of 1,376 h travel time is saved, and the average travel time per traveler drops by 0.75 min. In conclusion, efficient ML-based SBO method proposed in this study is more promising to handle large-scale, discrete, costly simulation-based DBLs allocation problems within a limited computational budget than common GP-based SBO methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
freezing发布了新的文献求助10
刚刚
可冥完成签到 ,获得积分10
刚刚
2秒前
3秒前
菜菜狙完成签到,获得积分10
3秒前
5秒前
5秒前
8秒前
9秒前
枕边人完成签到 ,获得积分10
9秒前
freezing完成签到,获得积分10
10秒前
11秒前
魁梧的万天完成签到,获得积分10
11秒前
宋胤欣完成签到,获得积分10
13秒前
13秒前
reck发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
16秒前
浮游应助科研通管家采纳,获得10
16秒前
xzy998应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
xzy998应助科研通管家采纳,获得10
17秒前
Takahara2000应助科研通管家采纳,获得10
17秒前
Takahara2000应助科研通管家采纳,获得10
17秒前
Takahara2000应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
桐桐应助科研通管家采纳,获得10
18秒前
Owen应助科研通管家采纳,获得10
18秒前
xzy998应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
bkagyin应助科研通管家采纳,获得10
18秒前
隐形曼青应助科研通管家采纳,获得10
18秒前
搜集达人应助科研通管家采纳,获得10
18秒前
xzy998应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得30
18秒前
无花果应助科研通管家采纳,获得10
19秒前
慕青应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4899127
求助须知:如何正确求助?哪些是违规求助? 4179490
关于积分的说明 12975214
捐赠科研通 3943544
什么是DOI,文献DOI怎么找? 2163400
邀请新用户注册赠送积分活动 1181711
关于科研通互助平台的介绍 1087387