亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Simulation-based optimization of large-scale dedicated bus lanes allocation: Using efficient machine learning models as surrogates

计算机科学 估计员 比例(比率) 刀切重采样 过程(计算) 数学优化 数学 统计 物理 量子力学 操作系统
作者
Zheng Li,Ye Tian,Jian Sun,Xi Lu,Yuheng Kan
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:143: 103827-103827
标识
DOI:10.1016/j.trc.2022.103827
摘要

• Proposed a quantitative simulation-based optimization framework to allocate dedicated bus lanes across large-scale networks. • Utilized efficient Machine learning-based surrogates and jackknife uncertainty estimators to improve the efficiency of simulation-based optimization. • Applied a mesoscopic simulation and dynamic traffic assignment tool to capture traffic dynamics and travelers’ choices. • Tested the efficient simulation-based dedicated bus lanes allocation framework with an actual large-scale network in Guiyang, Guizhou Province, China. Dedicated Bus Lanes (DBLs) have been implemented in many cities to boost buses’ reliability and to alleviate traffic congestions. However, how to correctly allocate DBLs across a large-scale real-world network is challenging. Simulation-Based Optimization (SBO) methods were utilized in this work to resolve this optimal allocation problem. Traditional discrete SBO methods are intractable when handling high-dimensional, costly, simulation-based Transportation Network Design Problems (TNDPs) using a limited computational budget. Thus, several efficient Machine Learning (ML)-based surrogate models and a Jackknife uncertainty estimator were introduced to existing SBO framework in this work. A number of comparative experiments between proposed methods and frequently-used Gaussian Process (GP)-SBO methods were conducted. A mesoscopic simulation and Dynamic Traffic Assignment (DTA) tool was adopted to evaluate the network performance. The results of numerical studies show that the optimization efficiency of proposed method is significantly higher than that of commonly used GP-based method when dealing with high dimensional problems. A real-world DBLs allocation case study in Guiyang, Guizhou Province, China again proves that efficient ML-based SBO method is capable to take much less CPU runtime to obtain a better solution than traditional method. The optimal DBLs allocation scheme found by one of the efficient ML-based methods raises the network performance by 5.05 %. A total of 1,376 h travel time is saved, and the average travel time per traveler drops by 0.75 min. In conclusion, efficient ML-based SBO method proposed in this study is more promising to handle large-scale, discrete, costly simulation-based DBLs allocation problems within a limited computational budget than common GP-based SBO methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LukeLion发布了新的文献求助10
1秒前
甜青提发布了新的文献求助10
1秒前
2秒前
16秒前
17秒前
麦麦发布了新的文献求助10
24秒前
25秒前
沫雨应助zznzn采纳,获得10
39秒前
一只鲨呱完成签到 ,获得积分10
46秒前
47秒前
47秒前
1分钟前
1分钟前
在水一方应助wang采纳,获得10
1分钟前
轻松听双发布了新的文献求助10
1分钟前
1分钟前
从容芮完成签到,获得积分0
1分钟前
量子星尘发布了新的文献求助100
1分钟前
1分钟前
1分钟前
AZN完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得20
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
小二郎应助风中的雪采纳,获得10
2分钟前
mingli2025发布了新的文献求助10
2分钟前
2分钟前
2分钟前
crazydick发布了新的文献求助10
2分钟前
情怀应助甜青提采纳,获得10
2分钟前
2分钟前
刺1656发布了新的文献求助10
2分钟前
3分钟前
甜青提发布了新的文献求助10
3分钟前
缥缈以珊完成签到,获得积分10
3分钟前
3分钟前
3分钟前
唐唐完成签到 ,获得积分10
3分钟前
3分钟前
qiii完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671189
求助须知:如何正确求助?哪些是违规求助? 4911434
关于积分的说明 15134190
捐赠科研通 4829942
什么是DOI,文献DOI怎么找? 2586543
邀请新用户注册赠送积分活动 1540204
关于科研通互助平台的介绍 1498392