Simulation-based optimization of large-scale dedicated bus lanes allocation: Using efficient machine learning models as surrogates

计算机科学 估计员 比例(比率) 刀切重采样 过程(计算) 数学优化 数学 统计 物理 量子力学 操作系统
作者
Zheng Li,Ye Tian,Jian Sun,Xi Lu,Yuheng Kan
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:143: 103827-103827
标识
DOI:10.1016/j.trc.2022.103827
摘要

• Proposed a quantitative simulation-based optimization framework to allocate dedicated bus lanes across large-scale networks. • Utilized efficient Machine learning-based surrogates and jackknife uncertainty estimators to improve the efficiency of simulation-based optimization. • Applied a mesoscopic simulation and dynamic traffic assignment tool to capture traffic dynamics and travelers’ choices. • Tested the efficient simulation-based dedicated bus lanes allocation framework with an actual large-scale network in Guiyang, Guizhou Province, China. Dedicated Bus Lanes (DBLs) have been implemented in many cities to boost buses’ reliability and to alleviate traffic congestions. However, how to correctly allocate DBLs across a large-scale real-world network is challenging. Simulation-Based Optimization (SBO) methods were utilized in this work to resolve this optimal allocation problem. Traditional discrete SBO methods are intractable when handling high-dimensional, costly, simulation-based Transportation Network Design Problems (TNDPs) using a limited computational budget. Thus, several efficient Machine Learning (ML)-based surrogate models and a Jackknife uncertainty estimator were introduced to existing SBO framework in this work. A number of comparative experiments between proposed methods and frequently-used Gaussian Process (GP)-SBO methods were conducted. A mesoscopic simulation and Dynamic Traffic Assignment (DTA) tool was adopted to evaluate the network performance. The results of numerical studies show that the optimization efficiency of proposed method is significantly higher than that of commonly used GP-based method when dealing with high dimensional problems. A real-world DBLs allocation case study in Guiyang, Guizhou Province, China again proves that efficient ML-based SBO method is capable to take much less CPU runtime to obtain a better solution than traditional method. The optimal DBLs allocation scheme found by one of the efficient ML-based methods raises the network performance by 5.05 %. A total of 1,376 h travel time is saved, and the average travel time per traveler drops by 0.75 min. In conclusion, efficient ML-based SBO method proposed in this study is more promising to handle large-scale, discrete, costly simulation-based DBLs allocation problems within a limited computational budget than common GP-based SBO methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
浮游应助djbj2022采纳,获得10
1秒前
5秒前
优秀笑柳完成签到,获得积分10
5秒前
丘比特应助trussie采纳,获得10
5秒前
Cherish完成签到,获得积分10
6秒前
111完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
Owen应助马上飞上宇宙采纳,获得10
7秒前
善学以致用应助jc采纳,获得10
7秒前
9秒前
划分完成签到,获得积分10
9秒前
111发布了新的文献求助10
10秒前
fanfan完成签到,获得积分10
11秒前
周久完成签到 ,获得积分10
11秒前
ada发布了新的文献求助10
12秒前
小蘑菇应助小卢卢快闭嘴采纳,获得10
13秒前
彭tiantian完成签到 ,获得积分10
13秒前
15秒前
lucy发布了新的文献求助10
15秒前
17秒前
爱放屁的马邦德完成签到,获得积分10
17秒前
simdows发布了新的文献求助10
18秒前
Rain完成签到,获得积分10
19秒前
20秒前
lzcccccc完成签到,获得积分10
21秒前
ljc完成签到 ,获得积分10
22秒前
23秒前
科研通AI6应助纸箱采纳,获得10
24秒前
24秒前
original完成签到,获得积分10
25秒前
一向年光无限身完成签到,获得积分10
25秒前
浮游应助大李不说话采纳,获得10
27秒前
28秒前
日出完成签到,获得积分10
29秒前
Twonej举报lilianan求助涉嫌违规
30秒前
30秒前
七星茶发布了新的文献求助10
31秒前
无花果应助Wells采纳,获得10
33秒前
上官若男应助Wells采纳,获得10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638000
求助须知:如何正确求助?哪些是违规求助? 4744481
关于积分的说明 15000910
捐赠科研通 4796182
什么是DOI,文献DOI怎么找? 2562369
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481741