Simulation-based optimization of large-scale dedicated bus lanes allocation: Using efficient machine learning models as surrogates

计算机科学 估计员 比例(比率) 刀切重采样 过程(计算) 数学优化 数学 量子力学 统计 操作系统 物理
作者
Zheng Li,Ye Tian,Jian Sun,Xi Lu,Yuheng Kan
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:143: 103827-103827
标识
DOI:10.1016/j.trc.2022.103827
摘要

• Proposed a quantitative simulation-based optimization framework to allocate dedicated bus lanes across large-scale networks. • Utilized efficient Machine learning-based surrogates and jackknife uncertainty estimators to improve the efficiency of simulation-based optimization. • Applied a mesoscopic simulation and dynamic traffic assignment tool to capture traffic dynamics and travelers’ choices. • Tested the efficient simulation-based dedicated bus lanes allocation framework with an actual large-scale network in Guiyang, Guizhou Province, China. Dedicated Bus Lanes (DBLs) have been implemented in many cities to boost buses’ reliability and to alleviate traffic congestions. However, how to correctly allocate DBLs across a large-scale real-world network is challenging. Simulation-Based Optimization (SBO) methods were utilized in this work to resolve this optimal allocation problem. Traditional discrete SBO methods are intractable when handling high-dimensional, costly, simulation-based Transportation Network Design Problems (TNDPs) using a limited computational budget. Thus, several efficient Machine Learning (ML)-based surrogate models and a Jackknife uncertainty estimator were introduced to existing SBO framework in this work. A number of comparative experiments between proposed methods and frequently-used Gaussian Process (GP)-SBO methods were conducted. A mesoscopic simulation and Dynamic Traffic Assignment (DTA) tool was adopted to evaluate the network performance. The results of numerical studies show that the optimization efficiency of proposed method is significantly higher than that of commonly used GP-based method when dealing with high dimensional problems. A real-world DBLs allocation case study in Guiyang, Guizhou Province, China again proves that efficient ML-based SBO method is capable to take much less CPU runtime to obtain a better solution than traditional method. The optimal DBLs allocation scheme found by one of the efficient ML-based methods raises the network performance by 5.05 %. A total of 1,376 h travel time is saved, and the average travel time per traveler drops by 0.75 min. In conclusion, efficient ML-based SBO method proposed in this study is more promising to handle large-scale, discrete, costly simulation-based DBLs allocation problems within a limited computational budget than common GP-based SBO methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
草莓熊1215完成签到 ,获得积分10
刚刚
meimale完成签到,获得积分10
1秒前
小燚发布了新的文献求助10
2秒前
朝菌完成签到,获得积分10
2秒前
Akim应助F少采纳,获得10
3秒前
倪好完成签到,获得积分10
3秒前
5秒前
Leach完成签到 ,获得积分10
8秒前
摸鱼鱼发布了新的文献求助10
9秒前
zgsn完成签到,获得积分10
13秒前
cmc12314完成签到 ,获得积分10
15秒前
15秒前
15秒前
火星上的菲鹰完成签到,获得积分0
16秒前
harden9159完成签到,获得积分10
17秒前
路路有为完成签到 ,获得积分10
18秒前
青柠完成签到,获得积分10
18秒前
周末万岁完成签到,获得积分10
19秒前
cccyyb完成签到,获得积分10
19秒前
晨光中完成签到,获得积分10
19秒前
Disci完成签到,获得积分10
22秒前
lmq完成签到 ,获得积分10
22秒前
蛀牙牙完成签到,获得积分10
25秒前
balabala完成签到,获得积分10
25秒前
房杨完成签到,获得积分10
25秒前
单薄松鼠完成签到 ,获得积分10
26秒前
Tin完成签到,获得积分10
27秒前
系统提示完成签到,获得积分10
28秒前
大气夜山完成签到 ,获得积分10
29秒前
火之高兴完成签到 ,获得积分10
32秒前
Polymer72完成签到,获得积分0
32秒前
东风完成签到,获得积分10
33秒前
毛豆应助WANG采纳,获得10
34秒前
Yolo完成签到 ,获得积分10
36秒前
114555完成签到,获得积分10
38秒前
Jasen完成签到 ,获得积分10
39秒前
韶邑完成签到,获得积分10
40秒前
luke17743508621完成签到,获得积分10
40秒前
灰灰喵完成签到 ,获得积分10
40秒前
端庄代荷完成签到 ,获得积分10
41秒前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434871
求助须知:如何正确求助?哪些是违规求助? 3032199
关于积分的说明 8944583
捐赠科研通 2720149
什么是DOI,文献DOI怎么找? 1492192
科研通“疑难数据库(出版商)”最低求助积分说明 689725
邀请新用户注册赠送积分活动 685877