Towards Human-Like Educational Question Generation with Large Language Models

计算机科学 质量(理念) 自然语言生成 主题专家 人工智能 语言模型 航程(航空) 自然语言 机器学习 数据科学 专家系统 认识论 哲学 复合材料 材料科学
作者
Zichao Wang,Jakob Valdez,Debshila Basu Mallick,Richard G. Baraniuk
出处
期刊:Lecture Notes in Computer Science 卷期号:: 153-166 被引量:67
标识
DOI:10.1007/978-3-031-11644-5_13
摘要

We investigate the utility of large pretrained language models (PLMs) for automatic educational assessment question generation. While PLMs have shown increasing promise in a wide range of natural language applications, including question generation, they can generate unreliable and undesirable content. For high-stakes applications such as educational assessments, it is not only critical to ensure that the generated content is of high quality but also relates to the specific content being assessed. In this paper, we investigate the impact of various PLM prompting strategies on the quality of generated questions. We design a series of generation scenarios to evaluate various generation strategies and evaluate generated questions via automatic metrics and manual examination. With empirical evaluation, we identify the prompting strategy that is most likely to lead to high-quality generated questions. Finally, we demonstrate the promising educational utility of generated questions using our concluded best generation strategy by presenting generated questions together with human-authored questions to a subject matter expert, who despite their expertise, could not effectively distinguish between generated and human-authored questions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
小二郎应助hyominhsu采纳,获得10
1秒前
wanci应助无问采纳,获得10
1秒前
CKK应助maybe豪采纳,获得10
1秒前
yxy840325发布了新的文献求助10
1秒前
Jackson完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
3秒前
Lgaga完成签到,获得积分10
3秒前
暗夜浮尘发布了新的文献求助10
3秒前
rooner发布了新的文献求助10
3秒前
橘子小狗完成签到,获得积分10
4秒前
善学以致用应助yzz采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
田様应助leo采纳,获得10
4秒前
4秒前
睡觉的猫发布了新的文献求助10
4秒前
BowieHuang应助半胖采纳,获得10
4秒前
jackY1256发布了新的文献求助10
4秒前
周国煌发布了新的文献求助10
4秒前
5秒前
5秒前
千屿完成签到,获得积分10
5秒前
精明觅荷完成签到,获得积分10
6秒前
ZHU完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
Alex发布了新的文献求助10
7秒前
白白发布了新的文献求助10
7秒前
7秒前
可爱的函函应助xx采纳,获得10
8秒前
量子星尘发布了新的文献求助30
8秒前
Foalphaz发布了新的文献求助10
9秒前
可爱的函函应助客服小祥采纳,获得10
9秒前
sygclever完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791