Blockchain Assisted Federated Learning for Enabling Network Edge Intelligence

计算机科学 单点故障 服务器 计算机网络 分布式计算 边缘计算 Byzantine容错 云计算 容错 操作系统
作者
Yunxiang Wang,Jianhong Zhou,Gang Feng,Xianhua Niu,Shuang Qin
出处
期刊:IEEE Network [Institute of Electrical and Electronics Engineers]
卷期号:37 (1): 96-102 被引量:16
标识
DOI:10.1109/mnet.115.2200014
摘要

The recently emerging federated learning (FL) exploits massive data stored at multiple user nodes to train a global optimal learning model without leaking the privacy of user data. However, it is still inadequate to learn the global model safely at the centralized aggregator, which is an essential part for the traditional FL architecture. Specifically, when using FL in radio access networks to enable edge intelligence, it is difficult for a central server, which belongs to a third party, to guarantee its credibility. Moreover, because the central server may cause a single point of failure, its reliability is also difficult to guarantee. Besides, a malicious participating node of FL may send ill parameters for model aggregation. In this article, we develop a blockchain assisted federated learning (BC-FL) framework, with aim to overcome the single point of failure caused by central server. Meanwhile, we propose to use blockchain to implement auditing of individual involved nodes to ensure the reliability of learning process. To avoid privacy leakage during the audit process to the greatest extent, we design a matching audit mechanism to realize efficient random matching audit process. A cryptocurrency free delegated byzantine fault tolerant (CF-DBFT) consensus mechanism is also designed to realize the low-latency distributed consensus of all nodes in the FL proces. We apply the proposed BC-FL framework to resolve the computing resource allocation problem at the edger servers in MEC network. Simulation results demonstrate the effectiveness and performance superiority of the proposed BC-FL framework. Compared with legacy FL algorithm, the serving time of MEC servers and utilization of computing resource are increased by 35 percent and 48 percent respectively under our proposed BC-FL algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Pendulium发布了新的文献求助10
刚刚
yi学生完成签到,获得积分10
1秒前
1秒前
大模型应助叶子采纳,获得10
1秒前
2秒前
儒雅的猪八蛋完成签到,获得积分10
2秒前
SciGPT应助Hey采纳,获得10
2秒前
3秒前
summer完成签到,获得积分20
3秒前
忧虑的乘云完成签到,获得积分20
4秒前
4秒前
syy完成签到,获得积分10
4秒前
4秒前
我是老大应助Wink14551采纳,获得10
5秒前
烟花应助Snoopy采纳,获得10
5秒前
5秒前
jhih发布了新的文献求助10
5秒前
任性映秋完成签到,获得积分10
5秒前
xx发布了新的文献求助10
6秒前
6秒前
7秒前
852应助星河采纳,获得10
7秒前
嘿嘿发布了新的文献求助10
7秒前
华仔应助姜姜采纳,获得30
7秒前
hh完成签到,获得积分10
7秒前
syy发布了新的文献求助10
7秒前
8秒前
姜姜完成签到,获得积分10
9秒前
wu发布了新的文献求助30
9秒前
9秒前
Hello应助温暖小霸王采纳,获得10
11秒前
11秒前
欢呼采枫完成签到 ,获得积分10
11秒前
蛋蛋完成签到,获得积分10
11秒前
12秒前
chenying发布了新的文献求助20
12秒前
daxter发布了新的文献求助30
12秒前
12秒前
852应助只想快进到毕业采纳,获得10
12秒前
fairy完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593712
求助须知:如何正确求助?哪些是违规求助? 4679550
关于积分的说明 14810466
捐赠科研通 4644670
什么是DOI,文献DOI怎么找? 2534601
邀请新用户注册赠送积分活动 1502645
关于科研通互助平台的介绍 1469366