Blockchain Assisted Federated Learning for Enabling Network Edge Intelligence

计算机科学 单点故障 服务器 计算机网络 分布式计算 边缘计算 Byzantine容错 云计算 容错 操作系统
作者
Yunxiang Wang,Jianhong Zhou,Gang Feng,Xianhua Niu,Shuang Qin
出处
期刊:IEEE Network [Institute of Electrical and Electronics Engineers]
卷期号:37 (1): 96-102 被引量:15
标识
DOI:10.1109/mnet.115.2200014
摘要

The recently emerging federated learning (FL) exploits massive data stored at multiple user nodes to train a global optimal learning model without leaking the privacy of user data. However, it is still inadequate to learn the global model safely at the centralized aggregator, which is an essential part for the traditional FL architecture. Specifically, when using FL in radio access networks to enable edge intelligence, it is difficult for a central server, which belongs to a third party, to guarantee its credibility. Moreover, because the central server may cause a single point of failure, its reliability is also difficult to guarantee. Besides, a malicious participating node of FL may send ill parameters for model aggregation. In this article, we develop a blockchain assisted federated learning (BC-FL) framework, with aim to overcome the single point of failure caused by central server. Meanwhile, we propose to use blockchain to implement auditing of individual involved nodes to ensure the reliability of learning process. To avoid privacy leakage during the audit process to the greatest extent, we design a matching audit mechanism to realize efficient random matching audit process. A cryptocurrency free delegated byzantine fault tolerant (CF-DBFT) consensus mechanism is also designed to realize the low-latency distributed consensus of all nodes in the FL proces. We apply the proposed BC-FL framework to resolve the computing resource allocation problem at the edger servers in MEC network. Simulation results demonstrate the effectiveness and performance superiority of the proposed BC-FL framework. Compared with legacy FL algorithm, the serving time of MEC servers and utilization of computing resource are increased by 35 percent and 48 percent respectively under our proposed BC-FL algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满意沛槐发布了新的文献求助20
刚刚
bbdx发布了新的文献求助10
刚刚
1秒前
cocolu应助猜不猜不采纳,获得10
1秒前
11111发布了新的文献求助10
2秒前
月光完成签到,获得积分10
2秒前
函函函发布了新的文献求助10
2秒前
Ammon发布了新的文献求助10
2秒前
单薄的如之完成签到,获得积分10
2秒前
xyq完成签到,获得积分10
4秒前
Ava应助早日毕业采纳,获得30
5秒前
liuzhuCNU完成签到,获得积分10
6秒前
6秒前
7秒前
充电宝应助zzz采纳,获得10
8秒前
9秒前
柠檬不吃酸完成签到 ,获得积分10
9秒前
以南发布了新的文献求助10
10秒前
Ava应助bbdx采纳,获得10
10秒前
CHENXIN532发布了新的文献求助10
12秒前
虚幻莫言发布了新的文献求助10
12秒前
13秒前
海洋完成签到,获得积分10
13秒前
善学以致用应助函函函采纳,获得10
13秒前
wanglei完成签到,获得积分10
14秒前
14秒前
曲奇发布了新的文献求助10
15秒前
TTw完成签到,获得积分20
15秒前
丘比特应助寂寞的诗云采纳,获得10
16秒前
萧水白应助李思采纳,获得50
17秒前
17秒前
王又梅完成签到,获得积分10
17秒前
英姑应助怡然的晓啸采纳,获得10
17秒前
18秒前
木木发布了新的文献求助10
18秒前
18秒前
以南完成签到,获得积分20
19秒前
杨瑞特发布了新的文献求助10
19秒前
雪菁灵完成签到 ,获得积分10
19秒前
西不拉完成签到,获得积分10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306734
求助须知:如何正确求助?哪些是违规求助? 2940503
关于积分的说明 8497350
捐赠科研通 2614699
什么是DOI,文献DOI怎么找? 1428415
科研通“疑难数据库(出版商)”最低求助积分说明 663427
邀请新用户注册赠送积分活动 648259