Blockchain Assisted Federated Learning for Enabling Network Edge Intelligence

计算机科学 单点故障 服务器 计算机网络 分布式计算 边缘计算 Byzantine容错 云计算 容错 操作系统
作者
Yunxiang Wang,Jianhong Zhou,Gang Feng,Xianhua Niu,Shuang Qin
出处
期刊:IEEE Network [Institute of Electrical and Electronics Engineers]
卷期号:37 (1): 96-102 被引量:16
标识
DOI:10.1109/mnet.115.2200014
摘要

The recently emerging federated learning (FL) exploits massive data stored at multiple user nodes to train a global optimal learning model without leaking the privacy of user data. However, it is still inadequate to learn the global model safely at the centralized aggregator, which is an essential part for the traditional FL architecture. Specifically, when using FL in radio access networks to enable edge intelligence, it is difficult for a central server, which belongs to a third party, to guarantee its credibility. Moreover, because the central server may cause a single point of failure, its reliability is also difficult to guarantee. Besides, a malicious participating node of FL may send ill parameters for model aggregation. In this article, we develop a blockchain assisted federated learning (BC-FL) framework, with aim to overcome the single point of failure caused by central server. Meanwhile, we propose to use blockchain to implement auditing of individual involved nodes to ensure the reliability of learning process. To avoid privacy leakage during the audit process to the greatest extent, we design a matching audit mechanism to realize efficient random matching audit process. A cryptocurrency free delegated byzantine fault tolerant (CF-DBFT) consensus mechanism is also designed to realize the low-latency distributed consensus of all nodes in the FL proces. We apply the proposed BC-FL framework to resolve the computing resource allocation problem at the edger servers in MEC network. Simulation results demonstrate the effectiveness and performance superiority of the proposed BC-FL framework. Compared with legacy FL algorithm, the serving time of MEC servers and utilization of computing resource are increased by 35 percent and 48 percent respectively under our proposed BC-FL algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
萧一江发布了新的文献求助10
1秒前
灰灰12138完成签到,获得积分10
1秒前
顺利的雁梅完成签到 ,获得积分10
2秒前
小飞飞完成签到,获得积分10
2秒前
kehan完成签到,获得积分10
3秒前
kolento完成签到,获得积分10
3秒前
热心的诗蕊完成签到,获得积分10
3秒前
89757完成签到,获得积分10
3秒前
细致且入微完成签到,获得积分10
3秒前
PV_learner完成签到,获得积分10
4秒前
小鱼头完成签到,获得积分10
5秒前
Rainbow完成签到 ,获得积分20
6秒前
ljc完成签到 ,获得积分10
6秒前
赘婿应助牛马采纳,获得10
6秒前
魏小梅完成签到,获得积分10
6秒前
6秒前
曾经的路灯完成签到,获得积分10
6秒前
feilei完成签到,获得积分10
7秒前
小鱼头发布了新的文献求助10
8秒前
8秒前
萧一江完成签到,获得积分10
8秒前
舒适的晓旋完成签到,获得积分10
8秒前
清脆问柳完成签到,获得积分10
8秒前
9秒前
科研小土豆完成签到,获得积分10
9秒前
淳之风完成签到,获得积分10
9秒前
xiongqi完成签到,获得积分10
9秒前
顾矜应助RC_Wang采纳,获得10
10秒前
Joker_Li完成签到,获得积分10
10秒前
贺兰鸵鸟完成签到,获得积分10
10秒前
伶俐一曲完成签到,获得积分10
11秒前
777完成签到,获得积分10
11秒前
11秒前
11秒前
ye完成签到,获得积分10
11秒前
12秒前
壮观的垣完成签到,获得积分10
12秒前
火狐狸kc完成签到,获得积分10
12秒前
Alanni完成签到 ,获得积分10
12秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5118540
求助须知:如何正确求助?哪些是违规求助? 4324484
关于积分的说明 13472435
捐赠科研通 4157565
什么是DOI,文献DOI怎么找? 2278471
邀请新用户注册赠送积分活动 1280221
关于科研通互助平台的介绍 1218949