Methods for estimating the accumulated nitrogen concentration in anode of proton exchange membrane fuel cell stacks based on back propagation neural network

阳极 质子交换膜燃料电池 氮气 堆栈(抽象数据类型) 净化 化学 材料科学 化学工程 分析化学(期刊) 废物管理 工程类 色谱法 电极 计算机科学 生物化学 有机化学 物理化学 程序设计语言
作者
Wenlong Wu,Dongfang Chen,Yuehua Li,Jichao Hong,Xiaoming Xu
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:46 (15): 22530-22540 被引量:4
标识
DOI:10.1002/er.8556
摘要

Excellent performance is an important indicator to ensure the commercial development of fuel cells. During the operation of a fuel cell system, nitrogen accumulation will occur at the anode of the fuel cell stack because of hydrogen circulation and nitrogen permeation across the membrane. Nitrogen accumulation will lead to the degradation of fuel cell performance. A suitable purge strategy can effectively reduce the excessive nitrogen concentration. The formulation of the purge strategy is closely related to the change in nitrogen concentration, so the accurate estimation of nitrogen concentration is quite important. In this paper, the effect of nitrogen concentration on fuel cell performance under different current densities is studied, and the anode nitrogen concentration in the fuel cell stack is estimated by back propagation neural network. The identification result of nitrogen concentration based on the voltage of every single cell is more accurate. Without considering aging and working condition changes, mean absolute errors of estimated results are 0.75%, 0.67%, 0.62%, and 0.73%, and root mean square errors are 1.09%, 0.97%, 0.88%, and 0.99% at different current densities of 0.6, 0.8, 1.0, and 1.2 A·cm−2, respectively. The results indicate that the estimation method of nitrogen concentration for fuel cell anode based on back propagation neural network has a high accuracy, which can provide a new method for formulating purge strategy for fuel cell system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘l完成签到,获得积分10
刚刚
9699完成签到,获得积分20
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
破碎时间完成签到 ,获得积分10
2秒前
2秒前
2秒前
orixero应助忐忑的不可采纳,获得10
3秒前
科研通AI2S应助zhouyan采纳,获得10
3秒前
4秒前
蔡勇强发布了新的文献求助10
4秒前
小虫虫完成签到,获得积分10
4秒前
饼饼大王完成签到,获得积分10
4秒前
13013523252完成签到,获得积分10
4秒前
6秒前
hy发布了新的文献求助10
6秒前
科研通AI6应助tph采纳,获得10
7秒前
jesmblaq完成签到,获得积分10
8秒前
文静的夜阑完成签到,获得积分20
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
苹果有毒发布了新的文献求助10
9秒前
小石头完成签到,获得积分10
11秒前
12秒前
13013523252发布了新的文献求助10
12秒前
Jasper应助Walden采纳,获得10
12秒前
目土土完成签到 ,获得积分10
15秒前
海盐气泡水完成签到,获得积分10
16秒前
17秒前
十二十三完成签到 ,获得积分10
17秒前
18秒前
火星完成签到,获得积分20
18秒前
18秒前
20秒前
蓝天发布了新的文献求助10
23秒前
柔弱白羊发布了新的文献求助10
24秒前
Rosie发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646330
求助须知:如何正确求助?哪些是违规求助? 4770916
关于积分的说明 15034350
捐赠科研通 4805112
什么是DOI,文献DOI怎么找? 2569392
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812