Methods for estimating the accumulated nitrogen concentration in anode of proton exchange membrane fuel cell stacks based on back propagation neural network

阳极 质子交换膜燃料电池 氮气 堆栈(抽象数据类型) 净化 化学 材料科学 化学工程 分析化学(期刊) 废物管理 工程类 色谱法 电极 计算机科学 生物化学 有机化学 物理化学 程序设计语言
作者
Wenlong Wu,Dongfang Chen,Yuehua Li,Jichao Hong,Xiaoming Xu
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:46 (15): 22530-22540 被引量:4
标识
DOI:10.1002/er.8556
摘要

Excellent performance is an important indicator to ensure the commercial development of fuel cells. During the operation of a fuel cell system, nitrogen accumulation will occur at the anode of the fuel cell stack because of hydrogen circulation and nitrogen permeation across the membrane. Nitrogen accumulation will lead to the degradation of fuel cell performance. A suitable purge strategy can effectively reduce the excessive nitrogen concentration. The formulation of the purge strategy is closely related to the change in nitrogen concentration, so the accurate estimation of nitrogen concentration is quite important. In this paper, the effect of nitrogen concentration on fuel cell performance under different current densities is studied, and the anode nitrogen concentration in the fuel cell stack is estimated by back propagation neural network. The identification result of nitrogen concentration based on the voltage of every single cell is more accurate. Without considering aging and working condition changes, mean absolute errors of estimated results are 0.75%, 0.67%, 0.62%, and 0.73%, and root mean square errors are 1.09%, 0.97%, 0.88%, and 0.99% at different current densities of 0.6, 0.8, 1.0, and 1.2 A·cm−2, respectively. The results indicate that the estimation method of nitrogen concentration for fuel cell anode based on back propagation neural network has a high accuracy, which can provide a new method for formulating purge strategy for fuel cell system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kaka完成签到,获得积分10
刚刚
1秒前
科研老兵完成签到,获得积分10
1秒前
神勇初瑶完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
sss2021完成签到,获得积分10
3秒前
3秒前
4秒前
aaaa完成签到,获得积分10
4秒前
wddx完成签到,获得积分10
4秒前
4秒前
月亮啊完成签到 ,获得积分10
5秒前
andrewyu完成签到,获得积分10
5秒前
笑点低青曼完成签到,获得积分10
5秒前
ljx完成签到 ,获得积分0
5秒前
5秒前
6秒前
hao完成签到,获得积分10
6秒前
逆行者发布了新的文献求助10
6秒前
李君然完成签到,获得积分10
6秒前
典雅的书蝶完成签到,获得积分10
7秒前
天青色等烟雨完成签到,获得积分10
7秒前
7秒前
CC完成签到 ,获得积分10
7秒前
张才豪发布了新的文献求助10
7秒前
clearlove完成签到,获得积分10
8秒前
专一的射电波完成签到,获得积分10
8秒前
星星完成签到 ,获得积分10
8秒前
小骆驼发布了新的文献求助10
9秒前
wuwu完成签到,获得积分10
9秒前
Pengcheng完成签到,获得积分10
9秒前
9秒前
稳重的蛟凤完成签到 ,获得积分10
10秒前
MADAO完成签到,获得积分10
10秒前
10秒前
sunwending发布了新的文献求助10
10秒前
zach完成签到,获得积分20
11秒前
11秒前
田様应助JIE采纳,获得10
11秒前
Twinkle完成签到,获得积分10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698917
求助须知:如何正确求助?哪些是违规求助? 5127463
关于积分的说明 15223160
捐赠科研通 4853889
什么是DOI,文献DOI怎么找? 2604380
邀请新用户注册赠送积分活动 1555868
关于科研通互助平台的介绍 1514197