Real-time detection and analysis of foodborne pathogens via machine learning based fiber-optic Raman sensor

食品安全 拉曼光谱 软件可移植性 生化工程 计算机科学 纳米技术 材料科学 工艺工程 环境科学 食品科学 化学 工程类 光学 物理 程序设计语言
作者
Bohong Zhang,Md Asad Rahman,Jinling Liu,Jie Huang,Qingbo Yang
出处
期刊:Measurement [Elsevier]
卷期号:217: 113121-113121 被引量:17
标识
DOI:10.1016/j.measurement.2023.113121
摘要

Food safety is a critical concern worldwide, and in recent years, it has become a growing public concern in the United States due to mass production and multi-channel distribution of high-nutrient and fresh-cut foods that have increased the prevalence and diversity of foodborne pathogens (e.g., Escherichia coli, Salmonella, Listeria, etc.). Traditional methods for the detection of these pathogens rely heavily on low-efficiency techniques, which may expose the public to contaminated foods that have not been tested or identified. Therefore, rapid, simple, sensitive, and inexpensive detection methods are urgently needed for food safety investigations with higher efficiency and accuracy. One of the promising methods for the detection of foodborne pathogens is Raman spectroscopy, which is a molecular-level analytical tool with the advantages of high selectivity and sensitivity and simple operation at a relatively low cost. In this study, a novel fiber-optic-based portable Raman probe was developed and used for real-time detection of a panel of pathogen-specific molecular fingerprint volatile organic compounds (VOCs). Furthermore, machine learning (ML) algorithms were applied to assist in the extraction of molecular information from the raw Raman spectra, resulting in high accuracy prediction of complex VOC mixtures, even at high dilution folds (100x). The developed ML-assisted Raman probe has immense potential for rapid on-site detection of complex chemical mixtures in food safety and beyond. This innovative approach achieves high accuracy in comprehensively sorting mixed chemicals with varying concentrations and provides several advantages over previous studies, including speed, portability, non-contact operation, and precise classification of foodborne pathogen VOCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
仁爱发卡完成签到,获得积分10
4秒前
老实的鼠标完成签到,获得积分10
4秒前
5秒前
橙花发布了新的文献求助10
5秒前
英勇的鹤完成签到,获得积分10
5秒前
霸气的梦露完成签到,获得积分10
6秒前
lw777发布了新的文献求助10
6秒前
桐桐应助RUI采纳,获得10
6秒前
7秒前
7秒前
bzc完成签到,获得积分10
7秒前
整齐的玫瑰完成签到 ,获得积分10
7秒前
小狐狸完成签到,获得积分20
8秒前
8秒前
8秒前
勤奋流沙完成签到 ,获得积分10
8秒前
小小完成签到,获得积分10
8秒前
zhugao完成签到,获得积分10
9秒前
木木完成签到 ,获得积分10
9秒前
9秒前
木木完成签到,获得积分10
9秒前
11秒前
11秒前
11秒前
执笔完成签到,获得积分10
12秒前
完美世界应助孙文采纳,获得10
12秒前
lw777完成签到,获得积分10
12秒前
沙克几十块完成签到,获得积分10
13秒前
搜集达人应助小小采纳,获得10
13秒前
Chemistry发布了新的文献求助10
13秒前
redondo10完成签到,获得积分0
13秒前
小狐狸发布了新的文献求助10
14秒前
小王哪跑完成签到,获得积分10
15秒前
ding应助李小伟采纳,获得10
16秒前
16秒前
veraonly发布了新的文献求助10
16秒前
xiaoyudianddd完成签到,获得积分10
17秒前
体贴的颜完成签到,获得积分10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137206
求助须知:如何正确求助?哪些是违规求助? 2788244
关于积分的说明 7785188
捐赠科研通 2444219
什么是DOI,文献DOI怎么找? 1299854
科研通“疑难数据库(出版商)”最低求助积分说明 625606
版权声明 601011