Fitness-Distance-Constraint (FDC) based guide selection method for constrained optimization problems

数学优化 进化算法 约束(计算机辅助设计) 计算机科学 差异进化 选择(遗传算法) 成对比较 威尔科克森符号秩检验 最优化问题 过程(计算) 数学 人工智能 统计 几何学 曼惠特尼U检验 操作系统
作者
Burçin Özkaya,Hamdi Tolga Kahraman,Serhat Duman,Uğur Güvenç
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:144: 110479-110479 被引量:37
标识
DOI:10.1016/j.asoc.2023.110479
摘要

In the optimization of constrained type problems, the main difficulty is the elimination of the constraint violations in the evolutionary search process. Evolutionary algorithms are designed by default according to the requirements of unconstrained and continuous global optimization problems. Since there are no constraint functions in these type of problems, the constraint violations are not considered in the design of the guiding mechanism of evolutionary algorithms. In this study, two new methods were introduced to redesign the evolutionary algorithms in accordance with the requirements of constrained optimization problems. These were (i) constraint space-based, called Fitness-Distance-Constraint (FDC), selection method and (ii) dynamic guiding mechanism. Firstly, thanks to the FDC guide selection method, the constraint violation values of the individuals in the population were converted into score values and the individuals who increase the diversity in the search process were selected as guide. On the other hand, in dynamic guiding mechanism, the FDC method was applied in case of constraint violation, otherwise the default guide selection method was used The proposed methods were used to redesign the guiding mechanism of adaptive guided differential evolution (AGDE), a current evolutionary algorithm, and the FDC-AGDE algorithm was designed. The performance of the FDC-AGDE was tested on eleven different constrained real-world optimization problems. The results of the FDC-AGDE and AGDE were evaluated using the Friedman and Wilcoxon test methods. According to Wilcoxon pairwise results, the FDC-AGDE showed better performance than the AGDE in nine of the eleven problems and equal performance in two of the eleven problems. Moreover, the proposed algorithm was compared with the competitive and up-to-date MHS algorithms in terms of the results of Friedman test, Wilcoxon test, feasibility rate, and success rate. According to Friedman test results, the first three algorithms were the FDC-AGDE, LSHADE-SPACMA, and AGDE algorithms with the score of 2.69, 4.05, and 4.34, respectively. According to the mean values of the success rates obtained from the eleven problems, the FDC-AGDE, LSHADE-SPACMA, and AGDE algorithms ranked in the first three with the success rates of 67%, 48% and 28%, respectively. Consequently, the FDC-AGDE algorithm showed a superior performance comparing with the competing MHS algorithms. According to the results, it is expected that the proposed methods will be widely used in the constrained optimization problems in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
要减肥的书蕾关注了科研通微信公众号
刚刚
Akim应助无量采纳,获得10
刚刚
1秒前
华仔应助蘑菇腿采纳,获得10
2秒前
2秒前
香蕉觅云应助TiAmo采纳,获得10
2秒前
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得100
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
PPP完成签到,获得积分10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得30
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
清和漾完成签到,获得积分10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
5秒前
5秒前
5秒前
完美世界应助Kaleem采纳,获得10
5秒前
5秒前
5秒前
追寻绮玉完成签到,获得积分10
5秒前
6秒前
am发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424545
求助须知:如何正确求助?哪些是违规求助? 4538904
关于积分的说明 14164157
捐赠科研通 4455851
什么是DOI,文献DOI怎么找? 2443924
邀请新用户注册赠送积分活动 1435060
关于科研通互助平台的介绍 1412438