Fitness-Distance-Constraint (FDC) based guide selection method for constrained optimization problems

数学优化 进化算法 约束(计算机辅助设计) 计算机科学 差异进化 选择(遗传算法) 成对比较 威尔科克森符号秩检验 最优化问题 过程(计算) 数学 人工智能 统计 几何学 曼惠特尼U检验 操作系统
作者
Burçin Özkaya,Hamdi Tolga Kahraman,Serhat Duman,Uğur Güvenç
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:144: 110479-110479 被引量:37
标识
DOI:10.1016/j.asoc.2023.110479
摘要

In the optimization of constrained type problems, the main difficulty is the elimination of the constraint violations in the evolutionary search process. Evolutionary algorithms are designed by default according to the requirements of unconstrained and continuous global optimization problems. Since there are no constraint functions in these type of problems, the constraint violations are not considered in the design of the guiding mechanism of evolutionary algorithms. In this study, two new methods were introduced to redesign the evolutionary algorithms in accordance with the requirements of constrained optimization problems. These were (i) constraint space-based, called Fitness-Distance-Constraint (FDC), selection method and (ii) dynamic guiding mechanism. Firstly, thanks to the FDC guide selection method, the constraint violation values of the individuals in the population were converted into score values and the individuals who increase the diversity in the search process were selected as guide. On the other hand, in dynamic guiding mechanism, the FDC method was applied in case of constraint violation, otherwise the default guide selection method was used The proposed methods were used to redesign the guiding mechanism of adaptive guided differential evolution (AGDE), a current evolutionary algorithm, and the FDC-AGDE algorithm was designed. The performance of the FDC-AGDE was tested on eleven different constrained real-world optimization problems. The results of the FDC-AGDE and AGDE were evaluated using the Friedman and Wilcoxon test methods. According to Wilcoxon pairwise results, the FDC-AGDE showed better performance than the AGDE in nine of the eleven problems and equal performance in two of the eleven problems. Moreover, the proposed algorithm was compared with the competitive and up-to-date MHS algorithms in terms of the results of Friedman test, Wilcoxon test, feasibility rate, and success rate. According to Friedman test results, the first three algorithms were the FDC-AGDE, LSHADE-SPACMA, and AGDE algorithms with the score of 2.69, 4.05, and 4.34, respectively. According to the mean values of the success rates obtained from the eleven problems, the FDC-AGDE, LSHADE-SPACMA, and AGDE algorithms ranked in the first three with the success rates of 67%, 48% and 28%, respectively. Consequently, the FDC-AGDE algorithm showed a superior performance comparing with the competing MHS algorithms. According to the results, it is expected that the proposed methods will be widely used in the constrained optimization problems in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助milkcoffe采纳,获得10
刚刚
hll完成签到,获得积分10
刚刚
csd完成签到 ,获得积分10
1秒前
科研通AI2S应助植物代谢采纳,获得10
1秒前
上官若男应助小债采纳,获得20
2秒前
超级亿先发布了新的文献求助10
2秒前
赵晴发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
诸忆雪发布了新的文献求助10
5秒前
6秒前
舒服的牛排完成签到 ,获得积分10
7秒前
7秒前
7秒前
7秒前
ql88完成签到,获得积分10
8秒前
8秒前
9秒前
浮游应助xiaoyu采纳,获得10
10秒前
灰大壮壮发布了新的文献求助30
10秒前
Dxm完成签到 ,获得积分10
10秒前
专注的兰发布了新的文献求助10
11秒前
xinglin发布了新的文献求助10
12秒前
12秒前
Zzy22发布了新的文献求助10
12秒前
谋司马师发布了新的文献求助10
12秒前
cjzj完成签到,获得积分10
13秒前
情怀应助bzy采纳,获得10
13秒前
13秒前
季夏发布了新的文献求助10
13秒前
15秒前
Ronalsen完成签到 ,获得积分10
15秒前
17秒前
17秒前
18秒前
malele发布了新的文献求助10
21秒前
棒棒的红红完成签到,获得积分10
21秒前
崔雪峰完成签到,获得积分10
21秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5307165
求助须知:如何正确求助?哪些是违规求助? 4452863
关于积分的说明 13855440
捐赠科研通 4340491
什么是DOI,文献DOI怎么找? 2383191
邀请新用户注册赠送积分活动 1378035
关于科研通互助平台的介绍 1345875