Fitness-Distance-Constraint (FDC) based guide selection method for constrained optimization problems

数学优化 进化算法 约束(计算机辅助设计) 计算机科学 差异进化 选择(遗传算法) 成对比较 威尔科克森符号秩检验 最优化问题 过程(计算) 数学 人工智能 统计 几何学 曼惠特尼U检验 操作系统
作者
Burçin Özkaya,Hamdi Tolga Kahraman,Serhat Duman,Uğur Güvenç
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:144: 110479-110479 被引量:37
标识
DOI:10.1016/j.asoc.2023.110479
摘要

In the optimization of constrained type problems, the main difficulty is the elimination of the constraint violations in the evolutionary search process. Evolutionary algorithms are designed by default according to the requirements of unconstrained and continuous global optimization problems. Since there are no constraint functions in these type of problems, the constraint violations are not considered in the design of the guiding mechanism of evolutionary algorithms. In this study, two new methods were introduced to redesign the evolutionary algorithms in accordance with the requirements of constrained optimization problems. These were (i) constraint space-based, called Fitness-Distance-Constraint (FDC), selection method and (ii) dynamic guiding mechanism. Firstly, thanks to the FDC guide selection method, the constraint violation values of the individuals in the population were converted into score values and the individuals who increase the diversity in the search process were selected as guide. On the other hand, in dynamic guiding mechanism, the FDC method was applied in case of constraint violation, otherwise the default guide selection method was used The proposed methods were used to redesign the guiding mechanism of adaptive guided differential evolution (AGDE), a current evolutionary algorithm, and the FDC-AGDE algorithm was designed. The performance of the FDC-AGDE was tested on eleven different constrained real-world optimization problems. The results of the FDC-AGDE and AGDE were evaluated using the Friedman and Wilcoxon test methods. According to Wilcoxon pairwise results, the FDC-AGDE showed better performance than the AGDE in nine of the eleven problems and equal performance in two of the eleven problems. Moreover, the proposed algorithm was compared with the competitive and up-to-date MHS algorithms in terms of the results of Friedman test, Wilcoxon test, feasibility rate, and success rate. According to Friedman test results, the first three algorithms were the FDC-AGDE, LSHADE-SPACMA, and AGDE algorithms with the score of 2.69, 4.05, and 4.34, respectively. According to the mean values of the success rates obtained from the eleven problems, the FDC-AGDE, LSHADE-SPACMA, and AGDE algorithms ranked in the first three with the success rates of 67%, 48% and 28%, respectively. Consequently, the FDC-AGDE algorithm showed a superior performance comparing with the competing MHS algorithms. According to the results, it is expected that the proposed methods will be widely used in the constrained optimization problems in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ming完成签到,获得积分10
刚刚
aaa发布了新的文献求助10
刚刚
lonely完成签到,获得积分10
刚刚
ARIA发布了新的文献求助10
1秒前
FashionBoy应助hotongue采纳,获得10
1秒前
1秒前
Rando发布了新的文献求助10
2秒前
yangyu完成签到,获得积分10
2秒前
able完成签到 ,获得积分10
3秒前
吴迪发布了新的文献求助10
3秒前
3秒前
鳗鱼代丝完成签到,获得积分10
5秒前
超级诗桃发布了新的文献求助10
6秒前
6秒前
小于完成签到,获得积分10
7秒前
888完成签到 ,获得积分10
7秒前
lihongchi完成签到,获得积分10
8秒前
不忮刀发布了新的文献求助10
9秒前
wulalala完成签到,获得积分10
10秒前
11秒前
虚心怜阳完成签到,获得积分10
12秒前
12秒前
浮游应助曾经的康乃馨采纳,获得10
12秒前
Cecilia完成签到 ,获得积分10
14秒前
chenyu完成签到,获得积分10
14秒前
拓枫发布了新的文献求助10
15秒前
左欣岳完成签到 ,获得积分10
17秒前
君无戏言给君无戏言的求助进行了留言
18秒前
小小K发布了新的文献求助10
18秒前
lt完成签到,获得积分20
20秒前
wanci应助友好小刺猬采纳,获得10
20秒前
affff发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
21秒前
22秒前
22秒前
浮游应助曾经的康乃馨采纳,获得10
22秒前
24秒前
ll发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641780
求助须知:如何正确求助?哪些是违规求助? 4757199
关于积分的说明 15014597
捐赠科研通 4800184
什么是DOI,文献DOI怎么找? 2565890
邀请新用户注册赠送积分活动 1524058
关于科研通互助平台的介绍 1483707