亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Registration of Deformed Tissue: A GNN-VAE Approach With Data Assimilation for Sim-to-Real Transfer

自编码 计算机科学 人工智能 数据同化 推论 概率逻辑 代表(政治) 计算机视觉 模式识别(心理学) 模拟 人工神经网络 政治学 政治 物理 气象学 法学
作者
Mehrnoosh Afshar,Tyler Meyer,Ron S. Sloboda,Siraj Hussain,Nawaid Usmani,Mahdi Tavakoli
出处
期刊:IEEE-ASME Transactions on Mechatronics [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 2110-2118 被引量:3
标识
DOI:10.1109/tmech.2023.3275940
摘要

In image-guided surgery, deformation of soft tissues can cause substantial errors in targeting internal targets, since deformation can affect the translation of preoperative image-based surgical plans during surgery. Having a realistic tissue deformation simulator could enhance the accuracy of internal targets localization by giving an accurate estimation of the deformation applied to a preoperative model of the organ. A key challenge is to address the sim-to-real gap between the simulator and the actual intraoperative behavior of the tissue. The sim-to-real transfer challenge is addressed by formulating the problem as a probabilistic inference over a low-dimensional representation of deformed objects. The proposed method utilizes a generative variational autoencoder structure based on graph neural networks (GNN-VAE) to generate a probabilistic low-dimensional representation of the outputs of a physics-based simulator. To match simulation data to real data, the resultant low-dimensional distribution (i.e., prior distribution) is updated iteratively using an ensemble smoother with multiple data assimilation. The advantages of the proposed method are first, it only uses simulation data for training the GNN-VAE, and no retraining of GNN-VAE is required intraoperatively, second, it does not require estimating the mechanical properties of the tissue it is simulating, and third, is able to work with any physic-based simulator. The proposed framework was verified both in experimental and simulation studies and showed it can reduce the registration error in tissue deformation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
cc发布了新的文献求助10
6秒前
幽默赛君完成签到 ,获得积分10
14秒前
zr完成签到 ,获得积分10
22秒前
搜集达人应助科研通管家采纳,获得10
45秒前
韩韩完成签到 ,获得积分10
48秒前
1分钟前
1分钟前
1分钟前
子平完成签到 ,获得积分10
1分钟前
Weiyu完成签到 ,获得积分10
2分钟前
Alk完成签到,获得积分10
2分钟前
852应助科研通管家采纳,获得10
2分钟前
CodeCraft应助ly采纳,获得10
3分钟前
科研通AI5应助毛不二采纳,获得10
3分钟前
罗是一完成签到,获得积分10
3分钟前
罗是一发布了新的文献求助10
3分钟前
3分钟前
一尾鱼完成签到,获得积分10
3分钟前
毛不二发布了新的文献求助10
3分钟前
简单双组完成签到,获得积分10
4分钟前
酷波er应助Niki采纳,获得30
4分钟前
4分钟前
Akim应助科研通管家采纳,获得10
4分钟前
Xiaoxiao应助科研通管家采纳,获得10
4分钟前
华仔应助春风采纳,获得10
4分钟前
嘟嘟噜发布了新的文献求助10
4分钟前
ding应助春风采纳,获得10
4分钟前
4分钟前
嘟嘟噜完成签到,获得积分10
4分钟前
Niki发布了新的文献求助30
5分钟前
5分钟前
5分钟前
早岁完成签到,获得积分10
5分钟前
无花果应助费老三采纳,获得10
5分钟前
陶醉羽毛发布了新的文献求助10
5分钟前
5分钟前
费老三发布了新的文献求助10
5分钟前
慕青应助过时的起眸采纳,获得10
5分钟前
知足的憨人丫丫完成签到,获得积分10
5分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555736
求助须知:如何正确求助?哪些是违规求助? 3131355
关于积分的说明 9390838
捐赠科研通 2831075
什么是DOI,文献DOI怎么找? 1556317
邀请新用户注册赠送积分活动 726483
科研通“疑难数据库(出版商)”最低求助积分说明 715803