A Distance Transformation Deep Forest Framework With Hybrid-Feature Fusion for CXR Image Classification

计算机科学 人工智能 模式识别(心理学) 融合 图像融合 转化(遗传学) 特征(语言学) 上下文图像分类 图像(数学) 计算机视觉 生物 语言学 生物化学 基因 哲学
作者
Qingqi Hong,Lingli Lin,Zihan Li,Qingde Li,Junfeng Yao,Qingqiang Wu,Kunhong Liu,Jie Tian
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (10): 14633-14644 被引量:7
标识
DOI:10.1109/tnnls.2023.3280646
摘要

Detecting pneumonia, especially coronavirus disease 2019 (COVID-19), from chest X-ray (CXR) images is one of the most effective ways for disease diagnosis and patient triage. The application of deep neural networks (DNNs) for CXR image classification is limited due to the small sample size of the well-curated data. To tackle this problem, this article proposes a distance transformation-based deep forest framework with hybrid-feature fusion (DTDF-HFF) for accurate CXR image classification. In our proposed method, hybrid features of CXR images are extracted in two ways: hand-crafted feature extraction and multigrained scanning. Different types of features are fed into different classifiers in the same layer of the deep forest (DF), and the prediction vector obtained at each layer is transformed to form distance vector based on a self-adaptive scheme. The distance vectors obtained by different classifiers are fused and concatenated with the original features, then input into the corresponding classifier at the next layer. The cascade grows until DTDF-HFF can no longer gain benefits from the new layer. We compare the proposed method with other methods on the public CXR datasets, and the experimental results show that the proposed method can achieve state-of-the art (SOTA) performance. The code will be made publicly available at https://github.com/hongqq/DTDF-HFF.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kaede发布了新的文献求助10
刚刚
刚刚
李卓完成签到,获得积分10
刚刚
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
桐桐应助热心的大船采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
1秒前
Orange应助科研通管家采纳,获得10
1秒前
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
早睡早起完成签到 ,获得积分10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
魏士博完成签到,获得积分10
1秒前
高高绮玉应助科研通管家采纳,获得10
1秒前
1秒前
852应助王达采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
Momomo应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
zhdan完成签到,获得积分10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
踏实的师完成签到,获得积分10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
3秒前
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
MIZU应助lololoan采纳,获得10
3秒前
yfy_fairy发布了新的文献求助10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
安医清嘉完成签到,获得积分10
3秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444