Atomic Oxygen-Induced Surface Erosion Behavior and Mechanical Degradation of Polyether Ether Ketone via Reactive Molecular Dynamics Simulations

偷看 材料科学 分子动力学 极限抗拉强度 乙醚 聚合物 复合材料 化学物理 化学 计算化学 有机化学
作者
Guixiang Li,Junjie Wang,Bo Niu,Xing Yue,Xiubing Liang,Yayun Zhang,Donghui Long
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
卷期号:127 (24): 5509-5520 被引量:4
标识
DOI:10.1021/acs.jpcb.3c02074
摘要

Atomic oxygen (AO) collision is one of the most serious threats to polymeric materials exposed to the space environment, yet understanding the structural changes and degradation of materials caused by AO impact remains a tremendous issue. Herein, we systematically evaluate the erosion collision and mechanical degradation of polyether ether ketone (PEEK) resin under hypervelocity AO impact using reactive molecular dynamics simulations. The interaction process and local evolution mechanism between high-speed AO and PEEK are investigated for the first time, suggesting that AO will either be scattered or adsorbed by PEEK, which is strongly correlated with the main degraded species evolution including O2, OH, CO, and CO2. Different AO fluxes and AO incidence angle simulations indicate that high-energy AO collision on the surface transfers kinetic energy to PEEK's thermal energy, thus inducing mass loss and surface penetration mechanisms. Vertically impacted AO causes less erosion on the PEEK matrix, rather than obliquely. Furthermore, PEEK chains modified with functional side groups are comprehensively investigated by 200 AO impact and high strain rate (1010 s-1) tensile simulations, demonstrating that the spatial configuration and stable benzene functionality of phenyl side groups can significantly improve the AO resistance and mechanical properties of PEEK at 300 and 800 K. This work revealed useful insights into the interaction mechanisms between AO and PEEK at the atomic scale and may provide a protocol for screening and designing new polymers of high AO tolerance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
19205100313完成签到,获得积分10
1秒前
嘉许发布了新的文献求助10
2秒前
科研通AI5应助NZHMD采纳,获得10
5秒前
5秒前
李健应助帅气的Bond采纳,获得10
5秒前
领导范儿应助胡模蘋大猪采纳,获得10
6秒前
ying完成签到,获得积分10
7秒前
我爱科研完成签到,获得积分20
7秒前
qaqa发布了新的文献求助10
7秒前
7秒前
善学以致用应助lenelene采纳,获得10
8秒前
上官若男应助绥遇则安采纳,获得10
9秒前
10秒前
长生的落叶完成签到,获得积分10
10秒前
小二郎应助berg采纳,获得10
10秒前
情怀应助nnnnn753962采纳,获得10
11秒前
Flora发布了新的文献求助20
11秒前
11秒前
研友_VZG7GZ应助kx采纳,获得10
12秒前
小凌完成签到,获得积分10
13秒前
酷波er应助qaqa采纳,获得10
13秒前
昏睡的蟠桃应助dengdengdeng采纳,获得30
15秒前
研友_VZG7GZ应助FRL采纳,获得10
15秒前
15秒前
冯冯发布了新的文献求助10
16秒前
16秒前
科研通AI5应助嘉许采纳,获得10
16秒前
Justtry发布了新的文献求助10
17秒前
逺山長完成签到,获得积分10
17秒前
17秒前
18秒前
wyp发布了新的文献求助10
18秒前
21秒前
葛晶晶发布了新的文献求助10
21秒前
22秒前
25秒前
酷波er应助小白采纳,获得10
26秒前
26秒前
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745298
求助须知:如何正确求助?哪些是违规求助? 3288239
关于积分的说明 10057865
捐赠科研通 3004450
什么是DOI,文献DOI怎么找? 1649662
邀请新用户注册赠送积分活动 785484
科研通“疑难数据库(出版商)”最低求助积分说明 751098