Detection of Myocardial Infarction Using Hybrid Models of Convolutional Neural Network and Recurrent Neural Network

卷积神经网络 计算机科学 深度学习 人工智能 循环神经网络 特征提取 特征(语言学) 心肌梗塞 人工神经网络 机器学习 模式识别(心理学) 心脏病学 医学 哲学 语言学
作者
Sumayyah Hasbullah,Mohd Soperi Mohd Zahid,Satria Mandala
出处
期刊:BioMedInformatics [MDPI AG]
卷期号:3 (2): 478-492 被引量:14
标识
DOI:10.3390/biomedinformatics3020033
摘要

Myocardial Infarction (MI) is the death of the heart muscle caused by lack of oxygenated blood flow to the heart muscle. It has been the main cause of death worldwide. The fastest way to detect MI is by using an electrocardiogram (ECG) device, which generates graphs of heartbeats morphology over a certain period of time. Patients with MI need fast intervention as delay will lead to worsening heart conditions or failure. To improve MI diagnosis, much research has been carried out to come up with a fast and reliable system to aid automatic MI detection and prediction from ECG readings. Recurrent Neural Network (RNN) with memory has produced more accurate results in predicting time series problems. Convolutional neural networks have also shown good results in terms of solving prediction problems. However, CNN models do not have the capability of remembering temporal information. This research proposes hybrid models of CNN and RNN techniques to predict MI. Specifically, CNN-LSTM and CNN-BILSTM models have been developed. The PTB XL dataset is used to train the models. The models predict ECG input as representing MI symptoms, healthy heart conditions or other cardiovascular diseases. Deep learning models offer automatic feature extraction, and our models take advantage of automatic feature extraction. The other superior models used their own feature extraction algorithm. This research proposed a straightforward architecture that depends mostly on the capability of the deep learning model to learn the data. Performance evaluation of the models shows overall accuracy of 89% for CNN LSTM and 91% for the CNN BILSTM model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安详向日葵完成签到 ,获得积分10
1秒前
Owen应助科学家采纳,获得10
2秒前
Spice完成签到 ,获得积分10
3秒前
acadedog完成签到 ,获得积分10
4秒前
alu完成签到,获得积分10
4秒前
缥缈的幻雪完成签到 ,获得积分10
5秒前
王饱饱完成签到 ,获得积分10
5秒前
中微子完成签到,获得积分10
6秒前
6秒前
小马哥完成签到,获得积分10
6秒前
俞无声完成签到 ,获得积分10
8秒前
活泼蜡烛完成签到,获得积分10
9秒前
9秒前
YL完成签到,获得积分10
10秒前
夏天完成签到,获得积分10
10秒前
11秒前
sen123完成签到,获得积分10
11秒前
iuhgnor发布了新的文献求助10
11秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
十大完成签到 ,获得积分10
20秒前
大大小发布了新的文献求助10
21秒前
英姑应助chx8830316采纳,获得10
21秒前
深情千雁完成签到,获得积分10
22秒前
留猪完成签到,获得积分10
22秒前
22秒前
105400155完成签到,获得积分10
22秒前
23秒前
23秒前
小熊维尼完成签到,获得积分10
25秒前
西蓝花香菜完成签到 ,获得积分10
26秒前
季风气候完成签到 ,获得积分10
27秒前
科学家发布了新的文献求助10
27秒前
Justtry发布了新的文献求助10
28秒前
严念桃完成签到,获得积分10
28秒前
小杨发布了新的文献求助10
29秒前
文静的紫萱完成签到,获得积分10
32秒前
yao完成签到 ,获得积分10
32秒前
liutengfei123发布了新的文献求助10
32秒前
jia完成签到,获得积分10
33秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008892
求助须知:如何正确求助?哪些是违规求助? 3548554
关于积分的说明 11299093
捐赠科研通 3283171
什么是DOI,文献DOI怎么找? 1810293
邀请新用户注册赠送积分活动 886000
科研通“疑难数据库(出版商)”最低求助积分说明 811245