Reinforcement Learning-Based Particle Swarm Optimization for End-to-End Traffic Scheduling in TSN-5G Networks

计算机科学 计算机网络 端到端原则 调度(生产过程) 无线网络 人口 无线 分布式计算 工程类 电信 运营管理 社会学 人口学
作者
Xiaolong Wang,Haipeng Yao,Tianle Mai,Song Guo,Yunjie Liu
出处
期刊:IEEE ACM Transactions on Networking [Institute of Electrical and Electronics Engineers]
卷期号:31 (6): 3254-3268 被引量:34
标识
DOI:10.1109/tnet.2023.3276363
摘要

With the rapid development of the Industrial Internet of Things (IIoT), massive IIoT devices connect to industrial networks via wired and wireless. Furthermore, industrial networks pose new requirements on communications, such as strict latency boundaries, ultra-reliable transmission, and so on. To this end, time-sensitive networking (TSN) embedded fifth-generation (5G) wireless communication technology (i.e., TSN-5G networks), is considered the most promising solution to address these challenges. TSN can provide deterministic end-to-end latency and reliability for real-time applications in wired networks. 5G supports ultra-reliable and low-latency communications (uRLLC), providing increased flexibility and inherent mobility support in the wireless network. Thus, the integration of TSN and 5G provides numerous benefits, including increased flexibility, lower commissioning costs, and seamless interoperability of various devices, regardless of whether they use a wired or wireless interface. Nonetheless, the potential barriers between the TSN and 5G systems, such as clock synchronization and end-to-end traffic scheduling, are inevitable. Time synchronization has been studied in many works, so this paper focuses on the end-to-end traffic scheduling problem in TSN-5G networks. We propose a novel integrated TSN and 5G industrial network architecture, where the 5G system acts as a logical TSN-capable bridge. Based on this network architecture, we design a Double Q-learning based hierarchical particle swarm optimization algorithm (DQHPSO) to search for the optimal scheduling solution. The DQHPSO algorithm adopts a level-based population structure and introduces Double Q-learning to adjust the number of levels in the population, which evades the local optimum to further improve the search efficiency. Extensive simulations demonstrate that the DQHPSO algorithm can increase the scheduling success ratio of time-triggered flows compared to other algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助50
刚刚
机器猫发布了新的文献求助30
1秒前
上官若男应助陈飞鹏采纳,获得10
2秒前
打打应助奶油布丁采纳,获得10
2秒前
FashionBoy应助yuan采纳,获得10
4秒前
牛奶开水完成签到 ,获得积分10
4秒前
8秒前
浮生若梦完成签到,获得积分10
9秒前
领导范儿应助lzn采纳,获得10
9秒前
打打应助pia叽采纳,获得10
9秒前
长情半邪发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
zx完成签到,获得积分10
13秒前
14秒前
zz完成签到,获得积分10
14秒前
加菲丰丰应助Andy采纳,获得30
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
小言完成签到 ,获得积分10
16秒前
英姑应助dylan采纳,获得10
16秒前
jyby发布了新的文献求助10
17秒前
18秒前
nn应助羊羊呀采纳,获得10
18秒前
充电宝应助超级幼旋采纳,获得50
18秒前
陈飞鹏发布了新的文献求助10
19秒前
华仔应助没意思的意思采纳,获得10
19秒前
SciGPT应助倩倩采纳,获得10
19秒前
yuan发布了新的文献求助10
19秒前
小邹发布了新的文献求助10
20秒前
mf完成签到 ,获得积分10
20秒前
orixero应助ZhenpuWang采纳,获得10
21秒前
anlikek完成签到,获得积分10
21秒前
上官若男应助kk采纳,获得10
22秒前
桐桐应助yyy采纳,获得30
22秒前
王小小发布了新的文献求助10
24秒前
24秒前
25秒前
帕尼灬尼发布了新的文献求助20
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5003103
求助须知:如何正确求助?哪些是违规求助? 4247982
关于积分的说明 13234780
捐赠科研通 4046924
什么是DOI,文献DOI怎么找? 2214060
邀请新用户注册赠送积分活动 1224112
关于科研通互助平台的介绍 1144386