Reinforcement Learning-Based Particle Swarm Optimization for End-to-End Traffic Scheduling in TSN-5G Networks

计算机科学 计算机网络 端到端原则 调度(生产过程) 无线网络 人口 无线 分布式计算 工程类 电信 运营管理 社会学 人口学
作者
Xiaolong Wang,Haipeng Yao,Tianle Mai,Song Guo,Yunjie Liu
出处
期刊:IEEE ACM Transactions on Networking [Institute of Electrical and Electronics Engineers]
卷期号:31 (6): 3254-3268 被引量:22
标识
DOI:10.1109/tnet.2023.3276363
摘要

With the rapid development of the Industrial Internet of Things (IIoT), massive IIoT devices connect to industrial networks via wired and wireless. Furthermore, industrial networks pose new requirements on communications, such as strict latency boundaries, ultra-reliable transmission, and so on. To this end, time-sensitive networking (TSN) embedded fifth-generation (5G) wireless communication technology (i.e., TSN-5G networks), is considered the most promising solution to address these challenges. TSN can provide deterministic end-to-end latency and reliability for real-time applications in wired networks. 5G supports ultra-reliable and low-latency communications (uRLLC), providing increased flexibility and inherent mobility support in the wireless network. Thus, the integration of TSN and 5G provides numerous benefits, including increased flexibility, lower commissioning costs, and seamless interoperability of various devices, regardless of whether they use a wired or wireless interface. Nonetheless, the potential barriers between the TSN and 5G systems, such as clock synchronization and end-to-end traffic scheduling, are inevitable. Time synchronization has been studied in many works, so this paper focuses on the end-to-end traffic scheduling problem in TSN-5G networks. We propose a novel integrated TSN and 5G industrial network architecture, where the 5G system acts as a logical TSN-capable bridge. Based on this network architecture, we design a Double Q-learning based hierarchical particle swarm optimization algorithm (DQHPSO) to search for the optimal scheduling solution. The DQHPSO algorithm adopts a level-based population structure and introduces Double Q-learning to adjust the number of levels in the population, which evades the local optimum to further improve the search efficiency. Extensive simulations demonstrate that the DQHPSO algorithm can increase the scheduling success ratio of time-triggered flows compared to other algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈道哥完成签到 ,获得积分10
刚刚
1秒前
三七完成签到,获得积分10
1秒前
zifeimo发布了新的文献求助10
1秒前
科研通AI2S应助冰冰采纳,获得10
2秒前
练习时长两年半应助冰冰采纳,获得10
2秒前
Happyness应助superspace采纳,获得30
2秒前
yuHS完成签到,获得积分10
2秒前
2秒前
quan发布了新的文献求助10
3秒前
4秒前
丫丫完成签到 ,获得积分10
4秒前
4秒前
阿嘉完成签到,获得积分10
4秒前
5秒前
彳亍完成签到,获得积分10
5秒前
断数循环完成签到,获得积分10
5秒前
阳光女孩完成签到,获得积分10
5秒前
liujj完成签到,获得积分10
6秒前
6秒前
bkagyin应助yuHS采纳,获得10
7秒前
7秒前
7秒前
赵浩宇发布了新的文献求助10
7秒前
李珂完成签到,获得积分10
8秒前
顺利紫山发布了新的文献求助10
9秒前
Serenity发布了新的文献求助10
10秒前
10秒前
wenhaw发布了新的文献求助10
10秒前
断数循环发布了新的文献求助10
11秒前
福star高照发布了新的文献求助10
12秒前
YY关闭了YY文献求助
13秒前
ppg123应助啦啦啦采纳,获得10
13秒前
初商拾陆发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
WeiMooo发布了新的文献求助10
15秒前
zJx丶完成签到,获得积分10
15秒前
天天快乐应助MM采纳,获得10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635