已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Reinforcement Learning-Based Particle Swarm Optimization for End-to-End Traffic Scheduling in TSN-5G Networks

计算机科学 计算机网络 端到端原则 调度(生产过程) 无线网络 人口 无线 分布式计算 工程类 电信 运营管理 社会学 人口学
作者
Xiaolong Wang,Haipeng Yao,Tianle Mai,Song Guo,Yunjie Liu
出处
期刊:IEEE ACM Transactions on Networking [Institute of Electrical and Electronics Engineers]
卷期号:31 (6): 3254-3268 被引量:22
标识
DOI:10.1109/tnet.2023.3276363
摘要

With the rapid development of the Industrial Internet of Things (IIoT), massive IIoT devices connect to industrial networks via wired and wireless. Furthermore, industrial networks pose new requirements on communications, such as strict latency boundaries, ultra-reliable transmission, and so on. To this end, time-sensitive networking (TSN) embedded fifth-generation (5G) wireless communication technology (i.e., TSN-5G networks), is considered the most promising solution to address these challenges. TSN can provide deterministic end-to-end latency and reliability for real-time applications in wired networks. 5G supports ultra-reliable and low-latency communications (uRLLC), providing increased flexibility and inherent mobility support in the wireless network. Thus, the integration of TSN and 5G provides numerous benefits, including increased flexibility, lower commissioning costs, and seamless interoperability of various devices, regardless of whether they use a wired or wireless interface. Nonetheless, the potential barriers between the TSN and 5G systems, such as clock synchronization and end-to-end traffic scheduling, are inevitable. Time synchronization has been studied in many works, so this paper focuses on the end-to-end traffic scheduling problem in TSN-5G networks. We propose a novel integrated TSN and 5G industrial network architecture, where the 5G system acts as a logical TSN-capable bridge. Based on this network architecture, we design a Double Q-learning based hierarchical particle swarm optimization algorithm (DQHPSO) to search for the optimal scheduling solution. The DQHPSO algorithm adopts a level-based population structure and introduces Double Q-learning to adjust the number of levels in the population, which evades the local optimum to further improve the search efficiency. Extensive simulations demonstrate that the DQHPSO algorithm can increase the scheduling success ratio of time-triggered flows compared to other algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晓晓来了完成签到,获得积分10
1秒前
lilili完成签到 ,获得积分10
1秒前
小蘑菇应助谦让碧菡采纳,获得10
2秒前
逍遥子0211完成签到,获得积分10
3秒前
丰富源智完成签到,获得积分10
4秒前
唐ZY123发布了新的文献求助10
7秒前
滴嘟滴嘟完成签到 ,获得积分10
8秒前
10秒前
怡然凌柏完成签到 ,获得积分10
11秒前
12秒前
周冯雪完成签到 ,获得积分10
12秒前
13秒前
阔达静曼完成签到 ,获得积分10
13秒前
14秒前
15秒前
诸星大发布了新的文献求助50
16秒前
2220完成签到 ,获得积分10
16秒前
NeuroYue发布了新的文献求助10
18秒前
yinshan完成签到 ,获得积分10
18秒前
帅帅发布了新的文献求助10
18秒前
维维发布了新的文献求助10
19秒前
科研通AI5应助唐ZY123采纳,获得10
20秒前
kikikiki完成签到,获得积分10
21秒前
elmacho完成签到 ,获得积分10
21秒前
dd完成签到,获得积分10
22秒前
卧镁铀钳完成签到 ,获得积分10
22秒前
科研通AI6应助发发采纳,获得10
22秒前
科研通AI6应助发发采纳,获得10
22秒前
23秒前
xiaolong给xiaolong的求助进行了留言
23秒前
Owen应助帅帅采纳,获得10
24秒前
科研通AI6应助NeuroYue采纳,获得10
25秒前
谦让碧菡发布了新的文献求助10
29秒前
小明应助PPD采纳,获得10
30秒前
34秒前
求知者1701应助诸星大采纳,获得50
37秒前
ccc完成签到,获得积分10
38秒前
eterofpar完成签到,获得积分10
44秒前
南桥枝完成签到 ,获得积分10
47秒前
han关闭了han文献求助
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610291
求助须知:如何正确求助?哪些是违规求助? 4016305
关于积分的说明 12434932
捐赠科研通 3697878
什么是DOI,文献DOI怎么找? 2039077
邀请新用户注册赠送积分活动 1071968
科研通“疑难数据库(出版商)”最低求助积分说明 955614