亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reinforcement Learning-Based Particle Swarm Optimization for End-to-End Traffic Scheduling in TSN-5G Networks

计算机科学 计算机网络 端到端原则 调度(生产过程) 无线网络 人口 无线 分布式计算 工程类 电信 运营管理 社会学 人口学
作者
Xiaolong Wang,Haipeng Yao,Tianle Mai,Song Guo,Yunjie Liu
出处
期刊:IEEE ACM Transactions on Networking [Institute of Electrical and Electronics Engineers]
卷期号:31 (6): 3254-3268 被引量:34
标识
DOI:10.1109/tnet.2023.3276363
摘要

With the rapid development of the Industrial Internet of Things (IIoT), massive IIoT devices connect to industrial networks via wired and wireless. Furthermore, industrial networks pose new requirements on communications, such as strict latency boundaries, ultra-reliable transmission, and so on. To this end, time-sensitive networking (TSN) embedded fifth-generation (5G) wireless communication technology (i.e., TSN-5G networks), is considered the most promising solution to address these challenges. TSN can provide deterministic end-to-end latency and reliability for real-time applications in wired networks. 5G supports ultra-reliable and low-latency communications (uRLLC), providing increased flexibility and inherent mobility support in the wireless network. Thus, the integration of TSN and 5G provides numerous benefits, including increased flexibility, lower commissioning costs, and seamless interoperability of various devices, regardless of whether they use a wired or wireless interface. Nonetheless, the potential barriers between the TSN and 5G systems, such as clock synchronization and end-to-end traffic scheduling, are inevitable. Time synchronization has been studied in many works, so this paper focuses on the end-to-end traffic scheduling problem in TSN-5G networks. We propose a novel integrated TSN and 5G industrial network architecture, where the 5G system acts as a logical TSN-capable bridge. Based on this network architecture, we design a Double Q-learning based hierarchical particle swarm optimization algorithm (DQHPSO) to search for the optimal scheduling solution. The DQHPSO algorithm adopts a level-based population structure and introduces Double Q-learning to adjust the number of levels in the population, which evades the local optimum to further improve the search efficiency. Extensive simulations demonstrate that the DQHPSO algorithm can increase the scheduling success ratio of time-triggered flows compared to other algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wyx发布了新的文献求助10
2秒前
7秒前
英姑应助整齐千柳采纳,获得10
9秒前
16秒前
整齐千柳发布了新的文献求助10
19秒前
andrele应助科研通管家采纳,获得10
36秒前
andrele应助科研通管家采纳,获得10
36秒前
Criminology34应助科研通管家采纳,获得10
36秒前
jjqqqj完成签到 ,获得积分10
37秒前
najd完成签到 ,获得积分10
44秒前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
CodeCraft应助Kiri_0661采纳,获得10
1分钟前
明亮的代灵完成签到 ,获得积分10
1分钟前
Yuki完成签到 ,获得积分10
1分钟前
2分钟前
一个小胖子完成签到,获得积分10
2分钟前
Mingyue123发布了新的文献求助10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
LPPQBB应助科研通管家采纳,获得30
2分钟前
2分钟前
家欣完成签到 ,获得积分10
2分钟前
无花果应助清爽伯云采纳,获得30
2分钟前
科研通AI6应助ceeray23采纳,获得20
3分钟前
4分钟前
清爽伯云发布了新的文献求助30
4分钟前
清爽伯云完成签到,获得积分10
4分钟前
shaonianzu完成签到 ,获得积分10
4分钟前
寂寞的尔丝完成签到 ,获得积分10
4分钟前
ccc完成签到 ,获得积分10
4分钟前
coolplex完成签到 ,获得积分10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
4分钟前
科目三应助艺玲采纳,获得10
4分钟前
4分钟前
艺玲发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356965
求助须知:如何正确求助?哪些是违规求助? 4488587
关于积分的说明 13972349
捐赠科研通 4389621
什么是DOI,文献DOI怎么找? 2411667
邀请新用户注册赠送积分活动 1404221
关于科研通互助平台的介绍 1378341