Iterative Multiview Subspace Learning for Unpaired Multiview Clustering

聚类分析 人工智能 计算机科学 子空间拓扑 计算机视觉 模式识别(心理学)
作者
Wanqi Yang,Like Xin,Lei Wang,Ming Yang,Wenzhu Yan,Yang Gao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (10): 14848-14862 被引量:1
标识
DOI:10.1109/tnnls.2023.3281739
摘要

In real applications, several unpredictable or uncertain factors could result in unpaired multiview data, i.e., the observed samples between views cannot be matched. Since joint clustering among views is more effective than individual clustering in each view, we investigate unpaired multiview clustering (UMC), which is a valuable but insufficiently studied problem. Due to lack of matched samples between views, we could fail to build the connection between views. Therefore, we aim to learn the latent subspace shared by views. However, existing multiview subspace learning methods usually rely on the matched samples between views. To address this issue, we propose an iterative multiview subspace learning strategy [iterative unpaired multiview clustering (IUMC)], aiming to learn a complete and consistent subspace representation among views for UMC. Moreover, based on IUMC, we design two effective UMC methods: 1) Iterative unpaired multiview clustering via covariance matrix alignment (IUMC-CA) that further aligns the covariance matrix of subspace representations and then performs clustering on the subspace and 2) iterative unpaired multiview clustering via one-stage clustering assignments (IUMC-CY) that performs one-stage multiview clustering (MVC) by replacing the subspace representations with clustering assignments. Extensive experiments show the excellent performance of our methods for UMC, compared with the state-of-the-art methods. Also, the clustering performance of observed samples in each view can be considerably improved by those observed samples from the other views. In addition, our methods have good applicability in incomplete MVC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
betyby完成签到 ,获得积分10
1秒前
1秒前
wanglei完成签到,获得积分10
1秒前
2秒前
jiajiajai完成签到,获得积分10
2秒前
Orange应助无语采纳,获得10
3秒前
4秒前
仁爱钧完成签到,获得积分10
4秒前
Donby完成签到,获得积分10
5秒前
zws发布了新的文献求助10
5秒前
舒心雁桃关注了科研通微信公众号
5秒前
6秒前
6秒前
慢慢的地理人完成签到,获得积分10
6秒前
yaoyao想毕业完成签到,获得积分10
8秒前
发阿发完成签到,获得积分10
9秒前
JinwenShi发布了新的文献求助20
9秒前
10秒前
淋湿的雨完成签到 ,获得积分10
10秒前
dnmd完成签到,获得积分10
10秒前
:9发布了新的文献求助10
10秒前
等待香寒完成签到 ,获得积分10
10秒前
10秒前
SciGPT应助上的工人进场采纳,获得10
11秒前
11完成签到 ,获得积分10
11秒前
豪123456完成签到 ,获得积分10
13秒前
wanglei发布了新的文献求助30
13秒前
科研通AI2S应助风华正茂LC采纳,获得10
15秒前
鱼鱼子999完成签到,获得积分20
15秒前
彭于晏应助:9采纳,获得10
16秒前
可靠之玉完成签到,获得积分10
17秒前
我是老大应助kourosz采纳,获得10
18秒前
18秒前
浑绿海完成签到,获得积分10
18秒前
qliu完成签到,获得积分10
18秒前
21秒前
思源应助细心帽子采纳,获得10
24秒前
Lucas应助peng采纳,获得10
24秒前
25秒前
monster发布了新的文献求助10
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740133
求助须知:如何正确求助?哪些是违规求助? 3283079
关于积分的说明 10033717
捐赠科研通 2999959
什么是DOI,文献DOI怎么找? 1646230
邀请新用户注册赠送积分活动 783441
科研通“疑难数据库(出版商)”最低求助积分说明 750374