铁电性
材料科学
纳米技术
半导体
非易失性存储器
光电子学
工程物理
电介质
工程类
作者
Dong Hyun Lee,Young H. Lee,Yong Hyeon Cho,Hyojun Choi,Se Hyun Kim,Min Hyuk Park
标识
DOI:10.1002/adfm.202303956
摘要
Abstract Ferroelectric materials are considered ideal for emerging memory devices owing to their characteristic remanent polarization, which can be switched by applying a sufficient electric field. However, even several decades after the initial conceptualization of ferroelectric memory, its applications are limited to a niche market. The slow advancement of ferroelectric memories can be attributed to several extant issues, such as the absence of ferroelectric materials with complementary metal–oxide–semiconductor (CMOS) compatibility and scalability. Since the 2010s, ferroelectric memories have attracted increasing interest because of newly discovered ferroelectricity in well‐established CMOS‐compatible materials, which are previously known to be non‐ferroelectric, such as fluorite‐structured (Hf,Zr)O 2 and wurtzite‐structured (Al,Sc)N. With advancing material fabrication technologies, for example, accurate chemical doping and atomic‐level thickness control, a metastable polar phase, and switchable polarization with a reasonable electric field can be induced in (Hf,Zr)O 2 and (Al,Sc)N. Nonetheless, various issues still exist that urgently require solutions to facilitate the use of the ferroelectric (Hf,Zr)O 2 and (Al,Sc)N in emerging memory devices. Thus, ferroelectric (Hf,Zr)O 2 and (Al,Sc)N are comprehensively reviewed herein, including their fundamental science and practical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI