Application of Artificial Intelligence in Oncology Nursing

医学 肿瘤科 内科学 肿瘤科护理 医疗保健 梅德林 护理实习 护理部 人工智能 护士教育 计算机科学 政治学 经济增长 经济 法学
作者
Tianji Zhou,Yuanhui Luo,Juan Li,Hanyi Zhang,Zhenyu Meng,Wenjin Xiong,Jingping Zhang
出处
期刊:Cancer Nursing [Lippincott Williams & Wilkins]
卷期号:47 (6): 436-450 被引量:4
标识
DOI:10.1097/ncc.0000000000001254
摘要

Background Artificial intelligence (AI) has been increasingly used in healthcare during the last decade, and recent applications in oncology nursing have shown great potential in improving care for patients with cancer. It is timely to comprehensively synthesize knowledge about the progress of AI technologies in oncology nursing. Objective The aims of this study were to synthesize and evaluate the existing evidence of AI technologies applied in oncology nursing. Methods A scoping review was conducted based on the methodological framework proposed by Arksey and O’Malley and later improved by the Joanna Briggs Institute. Six English databases and 3 Chinese databases were searched dating from January 2010 to November 2022. Results A total of 28 articles were included in this review—26 in English and 2 in Chinese. Half of the studies used a descriptive design (level VI). The most widely used AI technologies were hybrid AI methods (28.6%) and machine learning (25.0%), which were primarily used for risk identification/prediction (28.6%). Almost half of the studies (46.4%) explored developmental stages of AI technologies. Ethical concerns were rarely addressed. Conclusions The applicability and prospect of AI in oncology nursing are promising, although there is a lack of evidence on the efficacy of these technologies in practice. More randomized controlled trials in real-life oncology nursing settings are still needed. Implications for Practice This scoping review presents comprehensive findings for consideration of translation into practice and may provide guidance for future AI education, research, and clinical implementation in oncology nursing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Cathy完成签到 ,获得积分10
1秒前
豪哥大大发布了新的文献求助10
1秒前
1秒前
tcmlida完成签到,获得积分10
1秒前
2秒前
顾矜应助echo1993采纳,获得10
2秒前
陈慧彬完成签到 ,获得积分10
3秒前
Raymond应助自然篮球采纳,获得10
3秒前
shuyu完成签到 ,获得积分10
4秒前
星辰大海应助Priscilla采纳,获得10
5秒前
chiyudoubao发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
可爱完成签到,获得积分20
6秒前
6秒前
自然篮球完成签到,获得积分10
8秒前
a水爱科研完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
科研通AI2S应助HJX采纳,获得10
10秒前
幽默白亦完成签到,获得积分10
10秒前
milka完成签到,获得积分10
10秒前
科研通AI5应助DXL采纳,获得30
10秒前
老迟到的新竹完成签到,获得积分10
10秒前
dd完成签到,获得积分10
12秒前
无月即明发布了新的文献求助10
12秒前
13秒前
苏苏发布了新的文献求助10
13秒前
优雅友菱完成签到,获得积分10
13秒前
13秒前
13秒前
丹丹完成签到,获得积分10
13秒前
大模型应助聪慧的绿柏采纳,获得10
14秒前
张张发布了新的文献求助10
14秒前
14秒前
14秒前
Dita发布了新的文献求助10
14秒前
叮当猫的悠闲生活完成签到,获得积分10
15秒前
唠叨的天薇完成签到 ,获得积分10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661763
求助须知:如何正确求助?哪些是违规求助? 3222703
关于积分的说明 9747711
捐赠科研通 2932425
什么是DOI,文献DOI怎么找? 1605644
邀请新用户注册赠送积分活动 758016
科研通“疑难数据库(出版商)”最低求助积分说明 734636