Streptomycin (STR) is extensively employed for preventive and curative purposes in animals, which is accumulated in human body through food chain and induces serious health problems. Herein, highly photoactive type II heterojunctions of porous CdIn2S4/SnO2 microspheres were initially prepared, which can effectively inhibit the recombination of the charge-hole pairs. Besides, the peroxidase-mimicking catalytic property of the hollow PtCu nanocages (PtCu NCs) was carefully investigated by UV-vis spectroscopy, where catalytic oxidation of tetramethylbenzidine behaved as the benchmarked reaction. On such basis, a highly selective photoelectrochemical (PEC) aptasensor was established with the CdIn2S4/SnO2 heterojunctions for bioanalysis of streptomycin, coupled by the PtCu NCs nanozyme-catalyzed biocatalytic precipitation to achieve signal magnification. Specifically, the home-made nanozyme was applied for catalytic oxidation of 3,3'-diaminobenzidine to generate insulating precipitate in aqueous H2O2 system and thereby block the light harvesting on the photoanode, showing steeply declined PEC responses. The as-built aptasensor showed a broad linear range of 0.01-200 nM with a low limit of detection of 7.50 pM (S/N = 3) for such analysis, combined by exploring its practical detection in milk samples. This work shows excellent nanozyme-catalyzed signal amplification for fabrication of ultrasensitive PEC biosensors towards other antibiotics detection.