Scrap Metal Classification Using Magnetic Induction Spectroscopy and Machine Vision

废品 电导率 合金 材料科学 金属 铁质 人工智能 光谱学 涡流 支持向量机 冶金 机器学习 计算机科学 工程类 电气工程 化学 物理 物理化学 量子力学
作者
Kane C. Williams,Michael O’Toole,A. J. Peyton
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:10
标识
DOI:10.1109/tim.2023.3284930
摘要

The need to recover and recycle material towards building a circular economy is increasingly a global imperative. Non-ferrous metals in particular are highly recyclable and can be extracted using processes such as eddy current separation. However, their further separation into recyclable groups based on metal or alloy continues to pose a challenge. Recently, we proposed a new technique to discriminate between non-ferrous metals: Magnetic induction spectroscopy (MIS) measures how a metal fragment scatters an excitation magnetic field over different frequencies. MIS is related to conductivity, which can be used to classify the fragment according to this property. In this paper, we demonstrate for the first time the use of MIS with machine learning to classify non-ferrous scrap metals drawn from commercial waste streams. Two approaches are explored: (1) MIS over a bandwidth from 3 kHz to 90 kHz, and (2) the combination of MIS with physical colour of the metal samples. We show that MIS alone can obtain purity and recovery rates >80% for most metal groups and waste streams, rising to >93% for stainless steel. The exception was the Zorba waste stream where the mix of aluminium alloys within the sample set led to poor conductivity contrasts. The introduction of colour substantially improved results in this case, increasing purity and recovery rates by 20-35 percentage points. Of the machine learning models tested, we found that random forest, extra trees and support vector machine algorithms consistently achieved the highest performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寻绿完成签到,获得积分10
刚刚
1秒前
1秒前
白菜完成签到,获得积分10
1秒前
高挑的若雁完成签到 ,获得积分10
2秒前
研友_qZ6qAn发布了新的文献求助10
4秒前
丘比特应助研途采纳,获得10
4秒前
5秒前
研友_pnx7JL完成签到,获得积分10
5秒前
尘_发布了新的文献求助10
5秒前
万能图书馆应助rwewe采纳,获得10
7秒前
一十六发布了新的文献求助10
9秒前
9秒前
小乔应助鼻揩了转去采纳,获得10
10秒前
干净寻冬应助entropy采纳,获得10
10秒前
务实凡灵完成签到,获得积分10
10秒前
温山先生完成签到,获得积分10
11秒前
刘营营完成签到,获得积分10
11秒前
研酒生完成签到 ,获得积分10
12秒前
不会取名完成签到,获得积分10
12秒前
浮游应助PGZ采纳,获得10
12秒前
14秒前
墨绝发布了新的文献求助10
15秒前
小蘑菇应助MGzsss采纳,获得10
16秒前
16秒前
16秒前
糊涂涂完成签到 ,获得积分10
17秒前
海棠完成签到 ,获得积分10
17秒前
ZJING9发布了新的文献求助10
18秒前
Owen应助科研小达子采纳,获得10
18秒前
18秒前
19秒前
dmj发布了新的文献求助10
19秒前
一十六完成签到,获得积分20
19秒前
吴玉杰完成签到,获得积分10
20秒前
23秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
heguangjie发布了新的文献求助10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646337
求助须知:如何正确求助?哪些是违规求助? 4771156
关于积分的说明 15034647
捐赠科研通 4805157
什么是DOI,文献DOI怎么找? 2569497
邀请新用户注册赠送积分活动 1526514
关于科研通互助平台的介绍 1485836