Scrap Metal Classification Using Magnetic Induction Spectroscopy and Machine Vision

废品 电导率 合金 材料科学 金属 铁质 人工智能 光谱学 涡流 支持向量机 冶金 机器学习 计算机科学 工程类 电气工程 化学 物理 物理化学 量子力学
作者
Kane C. Williams,Michael O’Toole,A. J. Peyton
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:10
标识
DOI:10.1109/tim.2023.3284930
摘要

The need to recover and recycle material towards building a circular economy is increasingly a global imperative. Non-ferrous metals in particular are highly recyclable and can be extracted using processes such as eddy current separation. However, their further separation into recyclable groups based on metal or alloy continues to pose a challenge. Recently, we proposed a new technique to discriminate between non-ferrous metals: Magnetic induction spectroscopy (MIS) measures how a metal fragment scatters an excitation magnetic field over different frequencies. MIS is related to conductivity, which can be used to classify the fragment according to this property. In this paper, we demonstrate for the first time the use of MIS with machine learning to classify non-ferrous scrap metals drawn from commercial waste streams. Two approaches are explored: (1) MIS over a bandwidth from 3 kHz to 90 kHz, and (2) the combination of MIS with physical colour of the metal samples. We show that MIS alone can obtain purity and recovery rates >80% for most metal groups and waste streams, rising to >93% for stainless steel. The exception was the Zorba waste stream where the mix of aluminium alloys within the sample set led to poor conductivity contrasts. The introduction of colour substantially improved results in this case, increasing purity and recovery rates by 20-35 percentage points. Of the machine learning models tested, we found that random forest, extra trees and support vector machine algorithms consistently achieved the highest performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三七完成签到,获得积分10
1秒前
1秒前
judy891zhu完成签到,获得积分10
1秒前
2秒前
2秒前
自由正豪完成签到,获得积分10
2秒前
在水一方应助水中鱼采纳,获得10
2秒前
2秒前
脑洞疼应助欣慰宛菡采纳,获得10
3秒前
3秒前
小蘑菇应助xiaoshuai采纳,获得10
3秒前
Ava应助香云采纳,获得10
4秒前
丘比特应助Jane采纳,获得10
4秒前
搜集达人应助小于采纳,获得10
4秒前
beyondjun完成签到,获得积分10
4秒前
4秒前
4秒前
逆流的鱼完成签到 ,获得积分10
5秒前
乐正亦寒完成签到 ,获得积分10
5秒前
dong应助Ogai采纳,获得10
6秒前
Jasper应助市不辣采纳,获得10
6秒前
李健的小迷弟应助zmj采纳,获得10
6秒前
小先生发布了新的文献求助10
7秒前
晓晓完成签到,获得积分10
7秒前
Yuanyuan发布了新的文献求助10
7秒前
beyondjun发布了新的文献求助10
8秒前
YuHang发布了新的文献求助10
8秒前
牛奶发布了新的文献求助10
8秒前
9秒前
清明发布了新的文献求助10
9秒前
10秒前
10秒前
汉堡包应助没烦恼小婷采纳,获得10
10秒前
领导范儿应助晓晓采纳,获得10
10秒前
11秒前
乙醇完成签到 ,获得积分10
12秒前
12秒前
turbohero发布了新的文献求助10
12秒前
小朋友王致和完成签到,获得积分10
12秒前
在水一方应助幸福的善若采纳,获得10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961973
求助须知:如何正确求助?哪些是违规求助? 3508240
关于积分的说明 11139976
捐赠科研通 3240869
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352