已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Ferromagnetic coupling mechanism and vacancy defect regulation strategy of V-doped LiMgAs

铁磁性 空位缺陷 凝聚态物理 磁矩 磁性 掺杂剂 磁性半导体 反铁磁性 材料科学 感应耦合 兴奋剂 Atom(片上系统) 化学 物理 嵌入式系统 量子力学 计算机科学
作者
Sea-Fue Wang,M.F. Wang
出处
期刊:Journal of Physics and Chemistry of Solids [Elsevier]
卷期号:180: 111484-111484
标识
DOI:10.1016/j.jpcs.2023.111484
摘要

First-principles calculations were conducted to investigate the electronic structure and magnetic coupling mechanism of V-doped LiMgAs. The regulation strategy of Li vacancy defects on magnetism was also adopted. The results showed that all the designed defective configurations exhibited thermodynamic stability evaluated from the formation energy. The V nearest neighbor doping configuration occupied the lowest formation energy of −9.26eV and performed the strongest stability. V dopant had advantages in magnetic introduction and the maximum atomic magnetic moment in this study was 6.40 μB/V. The ground state of the magnetic coupling was determined by the energy difference of the doping configurations for magnetic ions antiferromagnetic and ferromagnetic arrangements. The magnetic dopants existed in Li(MgV)As system by ferromagnetic coupling and the ferromagnetic stability weakened with the increase of the V atom separation. The incorporation of Li vacancy defect promoted the enhancement of ferromagnetism. The optimal design configuration was V atoms nearest neighbor doping with one Li vacancy defect with the energy difference of 0.27eV, which performed the strongest ferromagnetic stability. The removal of Li ion introduced the additional itinerant hole carrier and elevated the non-localized characteristics of the carriers in p-d hybrid orbitals, which facilitated the electron exchange between magnetic ions. In this paper, a novel type of dilute magnetic semiconductor with controllable carriers was designed and the mechanism of ferromagnetic coupling was revealed, which provided a theoretical reference for the subsequent studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jeep先生完成签到,获得积分10
3秒前
徐芳菲完成签到 ,获得积分10
6秒前
Zaleily完成签到,获得积分10
7秒前
9秒前
9秒前
10秒前
李爱国应助和谐的绮南采纳,获得10
11秒前
吴泽斌发布了新的文献求助10
12秒前
Akim应助科研小白采纳,获得10
13秒前
hp发布了新的文献求助20
13秒前
xiaoding应助芝吱芝吱采纳,获得10
13秒前
15秒前
搁浅发布了新的文献求助10
15秒前
白青发布了新的文献求助10
17秒前
syz发布了新的文献求助30
21秒前
吴泽斌完成签到,获得积分10
21秒前
CodeCraft应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
田様应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
完美世界应助科研通管家采纳,获得10
22秒前
上官若男应助科研通管家采纳,获得150
22秒前
慕青应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
23秒前
wub完成签到 ,获得积分10
26秒前
27秒前
29秒前
韩十四发布了新的文献求助10
29秒前
白青完成签到,获得积分10
31秒前
32秒前
32秒前
32秒前
32秒前
星辰大海发布了新的文献求助10
34秒前
真金小子完成签到 ,获得积分10
34秒前
34秒前
哈哈哈发布了新的文献求助10
37秒前
易吴鱼发布了新的文献求助10
37秒前
胡不言发布了新的文献求助10
40秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150395
求助须知:如何正确求助?哪些是违规求助? 2801512
关于积分的说明 7845255
捐赠科研通 2459095
什么是DOI,文献DOI怎么找? 1308964
科研通“疑难数据库(出版商)”最低求助积分说明 628618
版权声明 601727