Ferromagnetic coupling mechanism and vacancy defect regulation strategy of V-doped LiMgAs

铁磁性 空位缺陷 凝聚态物理 磁矩 磁性 掺杂剂 磁性半导体 反铁磁性 材料科学 感应耦合 兴奋剂 Atom(片上系统) 化学 物理 嵌入式系统 量子力学 计算机科学
作者
Sea-Fue Wang,M.F. Wang
出处
期刊:Journal of Physics and Chemistry of Solids [Elsevier]
卷期号:180: 111484-111484
标识
DOI:10.1016/j.jpcs.2023.111484
摘要

First-principles calculations were conducted to investigate the electronic structure and magnetic coupling mechanism of V-doped LiMgAs. The regulation strategy of Li vacancy defects on magnetism was also adopted. The results showed that all the designed defective configurations exhibited thermodynamic stability evaluated from the formation energy. The V nearest neighbor doping configuration occupied the lowest formation energy of −9.26eV and performed the strongest stability. V dopant had advantages in magnetic introduction and the maximum atomic magnetic moment in this study was 6.40 μB/V. The ground state of the magnetic coupling was determined by the energy difference of the doping configurations for magnetic ions antiferromagnetic and ferromagnetic arrangements. The magnetic dopants existed in Li(MgV)As system by ferromagnetic coupling and the ferromagnetic stability weakened with the increase of the V atom separation. The incorporation of Li vacancy defect promoted the enhancement of ferromagnetism. The optimal design configuration was V atoms nearest neighbor doping with one Li vacancy defect with the energy difference of 0.27eV, which performed the strongest ferromagnetic stability. The removal of Li ion introduced the additional itinerant hole carrier and elevated the non-localized characteristics of the carriers in p-d hybrid orbitals, which facilitated the electron exchange between magnetic ions. In this paper, a novel type of dilute magnetic semiconductor with controllable carriers was designed and the mechanism of ferromagnetic coupling was revealed, which provided a theoretical reference for the subsequent studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的微笑应助csu小明采纳,获得10
1秒前
bkagyin应助傻傻的从蕾采纳,获得10
1秒前
2秒前
2秒前
DDJ发布了新的文献求助30
2秒前
2秒前
wangjing11完成签到,获得积分10
3秒前
在水一方应助xieyuanxing采纳,获得10
3秒前
Orange应助孤独音响采纳,获得10
4秒前
handsomecat完成签到,获得积分10
4秒前
贝贝发布了新的文献求助10
4秒前
公孙世往发布了新的文献求助50
5秒前
5秒前
白依发布了新的文献求助10
5秒前
常常发布了新的文献求助10
5秒前
6秒前
6秒前
彩虹天堂完成签到,获得积分10
6秒前
mono发布了新的文献求助10
7秒前
思源应助赛特新思采纳,获得10
7秒前
王彭完成签到,获得积分10
7秒前
8秒前
8秒前
婷婷发布了新的文献求助10
8秒前
echo发布了新的文献求助30
8秒前
深情安青应助犹豫的君浩采纳,获得10
9秒前
求助人员应助王钰绮采纳,获得10
9秒前
win关注了科研通微信公众号
10秒前
kd7发布了新的文献求助10
10秒前
如意的冰双完成签到 ,获得积分10
11秒前
11秒前
11秒前
思源应助小杜采纳,获得10
11秒前
wulanshu发布了新的文献求助10
11秒前
绅筠玺完成签到 ,获得积分10
12秒前
12秒前
JHB关闭了JHB文献求助
13秒前
13秒前
14秒前
hwq123完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625544
求助须知:如何正确求助?哪些是违规求助? 4711411
关于积分的说明 14955483
捐赠科研通 4779507
什么是DOI,文献DOI怎么找? 2553786
邀请新用户注册赠送积分活动 1515698
关于科研通互助平台的介绍 1475905