Nash Equilibrium Seeking for Incomplete Cluster Game in the Cooperation–Competition Network

纳什均衡 计算机科学 数学优化 潜在博弈 趋同(经济学) 竞赛(生物学) 博弈论 李雅普诺夫函数 功能(生物学) 无政府状态的代价 多智能体系统 星团(航天器) 数理经济学 数学 稳定的代价 经济 人工智能 计算机网络 货币政策 生态学 货币经济学 非线性系统 物理 生物 进化生物学 量子力学 经济增长
作者
Chong‐Ke Zhao,Xiaohong Nian,Shiling Li
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (10): 6542-6552
标识
DOI:10.1109/tsmc.2023.3282800
摘要

In this article, we investigate the problem of seeking Nash equilibrium (NE) in multiagent systems within cooperation–competition networks. Each agent aims to optimize a total cost function that accounts for its own interests as well as those of its cooperators, considering both cooperative and noncooperative interactions with other agents. It is worth noting that, unlike in existing N-coalition games, the agents in this study only have knowledge of whether they are cooperative or noncooperative with their neighboring agents; they do not have information about non-neighboring agents who might be cooperators. As a result, due to potential disconnections in the communication topology within the cluster, it is not possible to consider the entire cluster as a virtual player to optimize its objective functions. To address this issue, we developed an algorithm using the singular perturbation technique, which divides the system into two distinct timescales. We propose a novel estimation algorithm to estimate the total cost function of disconnected subnetworks within the fast system. In the slow system, the search for NE is based on a gradient algorithm, while the Lyapunov stability theory is utilized to analyze the convergence of the algorithms. Furthermore, we extend the problem to accommodate scenarios where multiple subnetworks exist within the network. Numerical simulations are conducted to demonstrate their capability for resolving the noncooperative game problem in cooperation–competition networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吃皮完成签到,获得积分10
刚刚
1秒前
闪电球发布了新的文献求助10
1秒前
Lee发布了新的文献求助10
1秒前
1秒前
向思雁完成签到,获得积分10
1秒前
天天快乐应助ywx采纳,获得10
2秒前
2秒前
2秒前
like发布了新的文献求助10
2秒前
3秒前
汤圆完成签到,获得积分10
3秒前
独特的高山完成签到,获得积分10
3秒前
3秒前
紫霄客完成签到,获得积分10
3秒前
4秒前
烟花应助蛙蛙采纳,获得10
4秒前
4秒前
han发布了新的文献求助10
4秒前
郭1994完成签到 ,获得积分10
5秒前
sxb10101应助于文志采纳,获得50
5秒前
5秒前
林深沉发布了新的文献求助10
5秒前
闪闪书桃完成签到,获得积分10
5秒前
6秒前
陈欣发布了新的文献求助10
6秒前
11231发布了新的文献求助10
7秒前
7秒前
Tong完成签到,获得积分10
7秒前
ronll发布了新的文献求助10
7秒前
悦耳白山发布了新的文献求助10
7秒前
dophin发布了新的文献求助10
8秒前
8秒前
xiaoguoxiaoguo完成签到,获得积分10
9秒前
warrior发布了新的文献求助10
9秒前
英姑应助包包琪采纳,获得10
9秒前
9秒前
SR完成签到,获得积分10
10秒前
11秒前
芝士发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719347
求助须知:如何正确求助?哪些是违规求助? 5256132
关于积分的说明 15288645
捐赠科研通 4869222
什么是DOI,文献DOI怎么找? 2614690
邀请新用户注册赠送积分活动 1564705
关于科研通互助平台的介绍 1521914