High-throughput proximal ground crop phenotyping systems – A comprehensive review

吞吐量 作物 计算机科学 环境科学 农业工程 工程类 生物 农学 电信 无线
作者
Z. Y. Rui,Zhe Zhang,Michael Zhang,Afshin Azizi,C. Igathinathane,Haiyan Cen,Stavros Vougioukas,Han Li,Jian Zhang,Yu Jiang,Xiaomin Jiao,Meng Wang,Yiannis Ampatzidis,O. I. Oladele,Mahdi Ghasemi‐Varnamkhasti,Radi Radi
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:224: 109108-109108 被引量:9
标识
DOI:10.1016/j.compag.2024.109108
摘要

Current crop phenotyping mainly relies on manual measurements and visual inspection for data collection and crop assessment, which is labor-intensive, subjective, and inefficient. Hence, modern methods depend primarily on using sensors for phenotypic data collection to replace labor vision, developing algorithms for decision-making to replace human domain knowledge, and integrating autonomous phenotyping systems to improve efficiencies in the past decades. Despite the research progress in phenotyping, there is a lack of extensive review on this topic that will be useful to various stakeholders interested in this field. Therefore, this study was conducted to perform a comprehensive review of multiple methodologies and techniques used in high-throughput ground crop phenotyping systems. A Web of Science literature search was conducted with appropriate keywords for the recent past, and the research trends in this field were captured. The current review categorizes the progress of technology in terms of phenotyping platform, sensing, data processing, and system integration. Platforms have evolved from manual-based to autonomous. Manual-based platforms require workers for data collection, while autonomous platforms involve new technologies for navigation and data collection. Different sensing techniques are used for phenotyping data collection. This study mainly discusses the mainstream sensors, including RGB, multi/hyperspectral, thermal, stereo, and light detection and ranging, and concludes that multi-source sensors could provide more accurate phenotypic information. Algorithms are applied to collected data to extract useful phenotyping information at different scales (organ, individual plant, and community). Both machine learning (ML) and deep learning (DL) have been used for phenotyping information extraction, and the DL is gradually replacing ML due to its superior performance. A case study of integrated high-throughput proximal phenotyping robot was presented, showing how different sensors and navigation systems come together to achieve on-site and real-time measurements. Advancements in high-throughput proximal ground phenotyping systems through new information, communication, sensing, and autonomous technologies in agriculture are anticipated to be more integrated and efficient phenotyping. It is anticipated that autonomous robots would finally replace workers from laborious phenotyping work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助科研通管家采纳,获得10
刚刚
在水一方应助科研通管家采纳,获得20
刚刚
Zhanghh87应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
zimo应助科研通管家采纳,获得10
刚刚
田様应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
jack应助科研通管家采纳,获得10
刚刚
没吃饭应助科研通管家采纳,获得30
刚刚
ZZL应助科研通管家采纳,获得60
1秒前
1秒前
情怀应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
云飞扬应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
LYSM应助科研通管家采纳,获得10
1秒前
1秒前
打打应助今年orz采纳,获得10
2秒前
ding应助今夜不设防采纳,获得10
3秒前
小朱朱完成签到,获得积分20
3秒前
3秒前
4秒前
Nevaeh完成签到,获得积分10
4秒前
momo发布了新的文献求助30
4秒前
lt关注了科研通微信公众号
5秒前
小陶子完成签到,获得积分10
6秒前
yttttt应助古月采纳,获得10
6秒前
善学以致用应助古月采纳,获得10
6秒前
7秒前
小朱朱发布了新的文献求助10
7秒前
鲁滨逊发布了新的文献求助10
7秒前
可爱凡波完成签到,获得积分10
7秒前
Lee完成签到,获得积分10
7秒前
10秒前
10秒前
orixero应助cc采纳,获得10
10秒前
11秒前
懒羊羊发布了新的文献求助10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954947
求助须知:如何正确求助?哪些是违规求助? 3501168
关于积分的说明 11102048
捐赠科研通 3231509
什么是DOI,文献DOI怎么找? 1786448
邀请新用户注册赠送积分活动 870058
科研通“疑难数据库(出版商)”最低求助积分说明 801798