High-throughput proximal ground crop phenotyping systems – A comprehensive review

吞吐量 作物 计算机科学 环境科学 农业工程 工程类 生物 农学 电信 无线
作者
Z. Y. Rui,Zhe Zhang,Michael Zhang,Afshin Azizi,C. Igathinathane,Haiyan Cen,Stavros Vougioukas,Han Li,Jian Zhang,Yu Jiang,Xiaomin Jiao,Meng Wang,Yiannis Ampatzidis,O. I. Oladele,Mahdi Ghasemi‐Varnamkhasti,Radi Radi
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:224: 109108-109108 被引量:9
标识
DOI:10.1016/j.compag.2024.109108
摘要

Current crop phenotyping mainly relies on manual measurements and visual inspection for data collection and crop assessment, which is labor-intensive, subjective, and inefficient. Hence, modern methods depend primarily on using sensors for phenotypic data collection to replace labor vision, developing algorithms for decision-making to replace human domain knowledge, and integrating autonomous phenotyping systems to improve efficiencies in the past decades. Despite the research progress in phenotyping, there is a lack of extensive review on this topic that will be useful to various stakeholders interested in this field. Therefore, this study was conducted to perform a comprehensive review of multiple methodologies and techniques used in high-throughput ground crop phenotyping systems. A Web of Science literature search was conducted with appropriate keywords for the recent past, and the research trends in this field were captured. The current review categorizes the progress of technology in terms of phenotyping platform, sensing, data processing, and system integration. Platforms have evolved from manual-based to autonomous. Manual-based platforms require workers for data collection, while autonomous platforms involve new technologies for navigation and data collection. Different sensing techniques are used for phenotyping data collection. This study mainly discusses the mainstream sensors, including RGB, multi/hyperspectral, thermal, stereo, and light detection and ranging, and concludes that multi-source sensors could provide more accurate phenotypic information. Algorithms are applied to collected data to extract useful phenotyping information at different scales (organ, individual plant, and community). Both machine learning (ML) and deep learning (DL) have been used for phenotyping information extraction, and the DL is gradually replacing ML due to its superior performance. A case study of integrated high-throughput proximal phenotyping robot was presented, showing how different sensors and navigation systems come together to achieve on-site and real-time measurements. Advancements in high-throughput proximal ground phenotyping systems through new information, communication, sensing, and autonomous technologies in agriculture are anticipated to be more integrated and efficient phenotyping. It is anticipated that autonomous robots would finally replace workers from laborious phenotyping work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
实验的兔纸完成签到,获得积分10
刚刚
1秒前
小智完成签到,获得积分10
1秒前
小蘑菇应助CC采纳,获得10
2秒前
简易完成签到,获得积分10
3秒前
6秒前
李健春完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
诚心无颜完成签到,获得积分10
7秒前
ding应助later采纳,获得10
7秒前
7秒前
8秒前
Darren完成签到,获得积分20
8秒前
10秒前
qq.com完成签到,获得积分10
10秒前
11秒前
liz发布了新的文献求助30
11秒前
ky发布了新的文献求助10
11秒前
李健春发布了新的文献求助10
12秒前
12秒前
12秒前
英姑应助王奥林采纳,获得10
12秒前
12秒前
12秒前
小胖完成签到,获得积分10
14秒前
SYLH应助xing采纳,获得20
15秒前
青田101完成签到,获得积分10
15秒前
酷酷兔子发布了新的文献求助10
15秒前
miooo发布了新的文献求助10
15秒前
zhangzhisenn发布了新的文献求助10
16秒前
16秒前
xxxxxxh发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
希望天下0贩的0应助ky采纳,获得10
18秒前
19秒前
默默三毒完成签到,获得积分10
19秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842039
求助须知:如何正确求助?哪些是违规求助? 3384234
关于积分的说明 10533093
捐赠科研通 3104526
什么是DOI,文献DOI怎么找? 1709663
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773953