MADS箱
生物
染色质免疫沉淀
转录因子
发起人
基因
突变体
遗传学
基因表达
拟南芥
作者
Jingzhe Sun,Yucheng Liu,Yuhong Zheng,Y. J. Xue,Yuhuan Fan,Xiaofei Ma,Yujia Ji,Gaoyuan Liu,Xiaoming Zhang,Yang Li,S. Wang,Zhixi Tian,Lin Zhao
摘要
ABSTRACT Flowering time and maturity are crucial agronomic traits that affect the regional adaptability of soybean plants. The development of soybean cultivars with early maturity adapted to longer days and colder climates of high latitudes is very important for ensuring normal ripening before frost begins. FUL belongs to the MADS‐box transcription factor family and has several duplicated members in soybeans. In this study, we observed that overexpression of GmFULc in the Dongnong 50 cultivar promoted soybean maturity, while GmFULc knockout mutants exhibited late maturity. Chromatin immunoprecipitation sequencing (ChIP‐seq) and RNA sequencing (RNA‐seq) revealed that GmFULc could bind to the CArG, bHLH and homeobox motifs. Further investigation revealed that GmFULc could directly bind to the CArG motif in the promoters of the GmZTL3 and GmZTL4 genes. Overexpression of GmZTL4 promoted soybean maturity, whereas the ztl4 mutants exhibited delayed maturity. Moreover, we found that the cis element box 4 motif of the GmZTL4 promoter, a motif of light response elements, played an important role in controlling the growth period. Deletion of this motif shortened the growth period by increasing the expression levels of GmZTL4 . Functional investigations revealed that short‐day treatment promoted the binding of GmFULc to the promoter of GmZTL4 and inhibited the expression of E1 and E1Lb , ultimately resulting in the promotion of flowering and early maturation. Taken together, these findings suggest a novel photoperiod regulatory pathway in which GmFULc directly activates GmZTL4 to promote earlier maturity in soybean.
科研通智能强力驱动
Strongly Powered by AbleSci AI