已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-decadal and regional validation of the AMG model at county and grid scales unravels the role of crop residue inputs in increasing soil organic carbon stocks in the Tuojiang River Basin, China

土壤碳 环境科学 比例(比率) 网格 库存(枪支) 流域 土壤科学 土壤水分 地质学 地理 地图学 大地测量学 考古
作者
Qi Wang,Pierre Barré,Qiquan Li,Ting Lan,Minghua Zhou,Xuesong Gao,Julia Le Noë
出处
期刊:Agriculture, Ecosystems & Environment [Elsevier]
卷期号:371: 109092-109092 被引量:1
标识
DOI:10.1016/j.agee.2024.109092
摘要

Understanding and predicting long-term soil organic carbon (SOC) dynamics from regional to continental levels is key to evaluating the effects of various environmental variables and management practices on the SOC budget. To that end, accurate and reliable SOC models are decisive. However, SOC models remain poorly evaluated for long-term and large-scale applications. The AMG model, named after its creators Andriolo, Mary, and Guérif, is a simple first-order kinetic model that relies on key controlling input data, which is ideal for application across large spatial and long temporal scales. In the present study, we applied AMG model to simulate cropland SOC dynamics both at a gridded 1 km spatial resolution and at the county-level scale in the Tuojiang River Basin, China, from 1911 to 2017. We validated its performance against SOC stocks measurements and map reconstruction derived from soil monitoring campaign in 1980 and 2017. By doing so we aimed to: (i) test the model accuracy for large-scale and long-term applications, (ii) elucidate the uncertainties associated with the scale resolution of the model, and (iii) clarify the role of different environmental factors and management practices in decadal variations in SOC stocks. The validation test against SOC stock measurements from the national soil monitoring campaign in 1980 revealed that the AMG model run at the grid-scale resolution accurately reproduced the SOC stocks in 1980 (R2 = 0.76). The validation tests against model simulation of the change in SOC stocks from 1980 to 2017 was performed both at the grid-scale (R² = 0.35) and county-level scale (R² = 0.44) and revealed slightly better performance at the latter scale. This result highlights that implementing the SOC model at the county-level using reliable input datasets derived from inventory data is more reliable than using spatially explicit input datasets reconstructed from the same inventory data. This suggests that the reliability of model simulations is predominantly influenced by the quality of the input datasets rather than by the spatial resolution of the model implementation, so that increasing spatial resolution of model simulation is only beneficial if the reliability of the input dataset is not impoverished by the downscaling. These model validations allowed to investigate the main drivers of the century scale SOC dynamics by performing counterfactual scenarios. These indicated that the 50% increase in SOC stock simulated over the past century can mainly be attributed to an increase in crop residue inputs, particularly after the green revolution in the mid-1960 s. Overall, our study provides the first SOC model validation at the regional level against SOC stock time-series observations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
printzhao发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
kentonchow应助铮铮采纳,获得10
5秒前
傻丢完成签到 ,获得积分10
7秒前
7秒前
风趣小蜜蜂完成签到 ,获得积分10
7秒前
慕青应助五音不全汪采纳,获得10
8秒前
归尘发布了新的文献求助10
10秒前
奕柯完成签到,获得积分10
11秒前
科研通AI6应助小甘采纳,获得30
11秒前
12秒前
bkagyin应助杭谷波采纳,获得10
12秒前
FashionBoy应助Jonathan采纳,获得10
12秒前
14秒前
云帆发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
孤独的以菱完成签到 ,获得积分10
18秒前
一只快乐的小比熊完成签到 ,获得积分10
18秒前
111发布了新的文献求助10
18秒前
4114发布了新的文献求助10
21秒前
wx发布了新的文献求助10
21秒前
22秒前
叮当完成签到,获得积分10
23秒前
huangfan完成签到,获得积分20
24秒前
Laraineww完成签到 ,获得积分10
25秒前
风清扬发布了新的文献求助10
25秒前
ILS发布了新的文献求助30
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
大模型应助科研通管家采纳,获得10
26秒前
科目三应助科研通管家采纳,获得10
26秒前
完美世界应助科研通管家采纳,获得10
26秒前
情怀应助科研通管家采纳,获得10
26秒前
FashionBoy应助科研通管家采纳,获得10
26秒前
CodeCraft应助科研通管家采纳,获得10
27秒前
LPPQBB应助科研通管家采纳,获得50
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355997
求助须知:如何正确求助?哪些是违规求助? 4487796
关于积分的说明 13971120
捐赠科研通 4388602
什么是DOI,文献DOI怎么找? 2411155
邀请新用户注册赠送积分活动 1403696
关于科研通互助平台的介绍 1377356