亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-decadal and regional validation of the AMG model at county and grid scales unravels the role of crop residue inputs in increasing soil organic carbon stocks in the Tuojiang River Basin, China

土壤碳 环境科学 比例(比率) 网格 库存(枪支) 流域 土壤科学 土壤水分 地质学 地理 地图学 考古 大地测量学
作者
Qi Wang,Pierre Barré,Qiquan Li,Ting Lan,Minghua Zhou,Xuesong Gao,Julia Le Noë
出处
期刊:Agriculture, Ecosystems & Environment [Elsevier]
卷期号:371: 109092-109092 被引量:1
标识
DOI:10.1016/j.agee.2024.109092
摘要

Understanding and predicting long-term soil organic carbon (SOC) dynamics from regional to continental levels is key to evaluating the effects of various environmental variables and management practices on the SOC budget. To that end, accurate and reliable SOC models are decisive. However, SOC models remain poorly evaluated for long-term and large-scale applications. The AMG model, named after its creators Andriolo, Mary, and Guérif, is a simple first-order kinetic model that relies on key controlling input data, which is ideal for application across large spatial and long temporal scales. In the present study, we applied AMG model to simulate cropland SOC dynamics both at a gridded 1 km spatial resolution and at the county-level scale in the Tuojiang River Basin, China, from 1911 to 2017. We validated its performance against SOC stocks measurements and map reconstruction derived from soil monitoring campaign in 1980 and 2017. By doing so we aimed to: (i) test the model accuracy for large-scale and long-term applications, (ii) elucidate the uncertainties associated with the scale resolution of the model, and (iii) clarify the role of different environmental factors and management practices in decadal variations in SOC stocks. The validation test against SOC stock measurements from the national soil monitoring campaign in 1980 revealed that the AMG model run at the grid-scale resolution accurately reproduced the SOC stocks in 1980 (R2 = 0.76). The validation tests against model simulation of the change in SOC stocks from 1980 to 2017 was performed both at the grid-scale (R² = 0.35) and county-level scale (R² = 0.44) and revealed slightly better performance at the latter scale. This result highlights that implementing the SOC model at the county-level using reliable input datasets derived from inventory data is more reliable than using spatially explicit input datasets reconstructed from the same inventory data. This suggests that the reliability of model simulations is predominantly influenced by the quality of the input datasets rather than by the spatial resolution of the model implementation, so that increasing spatial resolution of model simulation is only beneficial if the reliability of the input dataset is not impoverished by the downscaling. These model validations allowed to investigate the main drivers of the century scale SOC dynamics by performing counterfactual scenarios. These indicated that the 50% increase in SOC stock simulated over the past century can mainly be attributed to an increase in crop residue inputs, particularly after the green revolution in the mid-1960 s. Overall, our study provides the first SOC model validation at the regional level against SOC stock time-series observations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洋洋完成签到 ,获得积分10
3秒前
默默善愁发布了新的文献求助10
5秒前
7秒前
13秒前
伊力扎提发布了新的文献求助20
14秒前
14秒前
怜寒完成签到 ,获得积分10
14秒前
鲜于灵竹完成签到,获得积分10
16秒前
pay发布了新的文献求助10
19秒前
Guts发布了新的文献求助10
20秒前
Accelerator完成签到,获得积分10
21秒前
伊力扎提完成签到,获得积分10
30秒前
33秒前
磊少完成签到,获得积分10
34秒前
思源应助Guts采纳,获得50
35秒前
归尘发布了新的文献求助10
39秒前
千早爱音完成签到 ,获得积分10
42秒前
XuNan完成签到,获得积分10
42秒前
Lucas应助材料生采纳,获得10
46秒前
51秒前
英姑应助科研通管家采纳,获得10
52秒前
52秒前
orixero应助pay采纳,获得10
55秒前
桐桐应助飞鞚采纳,获得10
55秒前
kento发布了新的文献求助10
55秒前
55秒前
SciGPT应助cxin采纳,获得10
1分钟前
Ming应助TRNA采纳,获得10
1分钟前
材料生发布了新的文献求助10
1分钟前
1分钟前
隐形的幻梅完成签到,获得积分10
1分钟前
ll发布了新的文献求助10
1分钟前
1分钟前
丁一发布了新的文献求助10
1分钟前
1分钟前
1分钟前
丁一完成签到,获得积分10
1分钟前
飞鞚发布了新的文献求助10
1分钟前
TRISTE发布了新的文献求助20
1分钟前
huxuehong完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754802
求助须知:如何正确求助?哪些是违规求助? 5489736
关于积分的说明 15380642
捐赠科研通 4893273
什么是DOI,文献DOI怎么找? 2631842
邀请新用户注册赠送积分活动 1579771
关于科研通互助平台的介绍 1535564