Multi-decadal and regional validation of the AMG model at county and grid scales unravels the role of crop residue inputs in increasing soil organic carbon stocks in the Tuojiang River Basin, China

土壤碳 环境科学 比例(比率) 网格 库存(枪支) 流域 土壤科学 土壤水分 地质学 地理 地图学 考古 大地测量学
作者
Li Wang,Pierre Barré,Qiquan Li,Ting Lan,Minghua Zhou,Xuesong Gao,Julia Le Noë
出处
期刊:Agriculture, Ecosystems & Environment [Elsevier]
卷期号:371: 109092-109092 被引量:1
标识
DOI:10.1016/j.agee.2024.109092
摘要

Understanding and predicting long-term soil organic carbon (SOC) dynamics from regional to continental levels is key to evaluating the effects of various environmental variables and management practices on the SOC budget. To that end, accurate and reliable SOC models are decisive. However, SOC models remain poorly evaluated for long-term and large-scale applications. The AMG model, named after its creators Andriolo, Mary, and Guérif, is a simple first-order kinetic model that relies on key controlling input data, which is ideal for application across large spatial and long temporal scales. In the present study, we applied AMG model to simulate cropland SOC dynamics both at a gridded 1 km spatial resolution and at the county-level scale in the Tuojiang River Basin, China, from 1911 to 2017. We validated its performance against SOC stocks measurements and map reconstruction derived from soil monitoring campaign in 1980 and 2017. By doing so we aimed to: (i) test the model accuracy for large-scale and long-term applications, (ii) elucidate the uncertainties associated with the scale resolution of the model, and (iii) clarify the role of different environmental factors and management practices in decadal variations in SOC stocks. The validation test against SOC stock measurements from the national soil monitoring campaign in 1980 revealed that the AMG model run at the grid-scale resolution accurately reproduced the SOC stocks in 1980 (R2 = 0.76). The validation tests against model simulation of the change in SOC stocks from 1980 to 2017 was performed both at the grid-scale (R² = 0.35) and county-level scale (R² = 0.44) and revealed slightly better performance at the latter scale. This result highlights that implementing the SOC model at the county-level using reliable input datasets derived from inventory data is more reliable than using spatially explicit input datasets reconstructed from the same inventory data. This suggests that the reliability of model simulations is predominantly influenced by the quality of the input datasets rather than by the spatial resolution of the model implementation, so that increasing spatial resolution of model simulation is only beneficial if the reliability of the input dataset is not impoverished by the downscaling. These model validations allowed to investigate the main drivers of the century scale SOC dynamics by performing counterfactual scenarios. These indicated that the 50% increase in SOC stock simulated over the past century can mainly be attributed to an increase in crop residue inputs, particularly after the green revolution in the mid-1960 s. Overall, our study provides the first SOC model validation at the regional level against SOC stock time-series observations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alexander完成签到,获得积分10
1秒前
2秒前
5秒前
5秒前
5秒前
科目三应助everyone_woo采纳,获得10
6秒前
xzx发布了新的文献求助10
7秒前
木子完成签到,获得积分10
7秒前
9秒前
Anna发布了新的文献求助10
9秒前
彭于晏应助陈陈采纳,获得10
10秒前
10秒前
桐夏发布了新的文献求助10
11秒前
13秒前
叶成帷完成签到,获得积分10
13秒前
ZSWAA发布了新的文献求助10
13秒前
叶成帷发布了新的文献求助10
15秒前
高手中的糕手完成签到,获得积分10
16秒前
科研通AI2S应助999采纳,获得10
17秒前
17秒前
搜集达人应助高大凌寒采纳,获得200
17秒前
18秒前
lixy完成签到,获得积分10
18秒前
18秒前
吡啶应助12345采纳,获得10
18秒前
20秒前
21秒前
Jun应助坚强的茗茗采纳,获得10
21秒前
慕青应助Luhan采纳,获得10
21秒前
阳光衣完成签到,获得积分10
22秒前
跳跃醉蝶发布了新的文献求助10
22秒前
zzl发布了新的文献求助30
23秒前
24秒前
sqrt138应助11采纳,获得20
28秒前
33秒前
38秒前
quan12138发布了新的文献求助10
40秒前
41秒前
42秒前
42秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157329
求助须知:如何正确求助?哪些是违规求助? 2808824
关于积分的说明 7878475
捐赠科研通 2467158
什么是DOI,文献DOI怎么找? 1313222
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919