Identifying cropland non-agriculturalization with high representational consistency from bi-temporal high-resolution remote sensing images: From benchmark datasets to real-world application

水准点(测量) 高分辨率 一致性(知识库) 计算机科学 遥感 数据挖掘 人工智能 地理 地图学
作者
Zhendong Sun,Yanfei Zhong,Xinyu Wang,Liangpei Zhang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:212: 454-474 被引量:9
标识
DOI:10.1016/j.isprsjprs.2024.05.011
摘要

Cropland non-agriculturalization (CNA) refers to the conversion of cropland into construction land, woodland/garden/grassland, water body, or other non-agricultural land, which ultimately disrupts local agroecosystems and the cultivation and production of crops. Remote sensing technology is an important tool for large-area CNA detection, and remote sensing based methods that can be used for this task include the time-series analysis method and change detection from bi-temporal images. In particular, change detection methods using high-resolution remote sensing imagery have great potential for CNA detection, but enormous challenges do still remain. The large intra-class variance of cropland with different phenological stages and planting patterns leads to cropland areas being difficult to identify effectively, while certain features can be misidentified because they are similar to cropland, resulting in false alarms and missed detections in the results. There is also a lack of large-scale CNA datasets covering multiple change scenarios as data support. To address these problems, a lightweight model focused on CNA detection (CNANet) is proposed in this paper. Specifically, the uniquely crafted represent-consist-enhance (RCE) module is seamlessly integrated between the encoder and decoder components of CNANet to perform a contrast operation on the deep features extracted by the feature extractor. The RCE module is specifically designed to aggregate multiple cropland representations and extend the cropland representations from the confusing background, to achieve the purpose of reducing the intra-class reflectance differences and enhancing the model's perception of cropland. In addition, a large-scale high-resolution cropland non-agriculturalization (Hi-CNA) dataset was built for the CNA identification task, with a total of 6797 pairs of 512 × 512 images with semantic annotations. Compared to the existing datasets, the Hi-CNA dataset has the advantages of multiple phenological stages, multiple change scenarios, and multiple annotation types, in addition to the large data volume. The experimental results obtained in this study show that the benchmark methods tested on the Hi-CNA dataset can all achieve a good accuracy, proving the high-quality annotation of the dataset. The overall accuracy and F1-score of CNANet with the default settings reach 93.81 % and 78.9 %, respectively, achieving a superior accuracy, compared to the other benchmark methods, and demonstrating stronger perception of cropland changes. In addition, in two selected verification regions within the large-scale real-world CNA mapping results, the F1-score is 83.61 % and 50.87 %. The Hi-CNA can be downloaded from http://rsidea.whu.edu.cn/Hi-CNA_dataset.htm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhouzheyu完成签到,获得积分10
1秒前
嘻嘻哈哈发布了新的文献求助70
3秒前
xiaotailan完成签到,获得积分10
3秒前
FUNG完成签到 ,获得积分10
3秒前
Doner完成签到,获得积分10
4秒前
我是小张完成签到 ,获得积分10
5秒前
mly完成签到 ,获得积分10
7秒前
张宇鑫完成签到,获得积分10
11秒前
Ding-Ding完成签到,获得积分10
12秒前
倩倩完成签到 ,获得积分10
15秒前
HuanChen完成签到 ,获得积分10
17秒前
huge完成签到,获得积分20
17秒前
川藏客完成签到,获得积分10
18秒前
迅速访文完成签到,获得积分10
18秒前
青菜完成签到,获得积分10
21秒前
马麻薯完成签到,获得积分10
21秒前
小离完成签到,获得积分10
22秒前
希哩哩完成签到 ,获得积分10
23秒前
迅速大山完成签到,获得积分10
25秒前
三岁完成签到 ,获得积分10
30秒前
满意的伊完成签到,获得积分10
32秒前
喜悦蚂蚁完成签到,获得积分10
33秒前
SharonDu完成签到 ,获得积分10
33秒前
liuchang完成签到 ,获得积分10
36秒前
soda饼干完成签到 ,获得积分10
38秒前
可问春风完成签到,获得积分10
39秒前
Daybreak完成签到 ,获得积分10
45秒前
越野蟹完成签到,获得积分10
45秒前
51秒前
laber完成签到,获得积分0
52秒前
木拉发布了新的文献求助10
57秒前
雨后完成签到 ,获得积分10
57秒前
57秒前
科目三应助嘻嘻哈哈采纳,获得10
58秒前
能干靖儿应助嘻嘻哈哈采纳,获得40
58秒前
能干靖儿应助嘻嘻哈哈采纳,获得60
58秒前
能干靖儿应助嘻嘻哈哈采纳,获得70
58秒前
能干靖儿应助嘻嘻哈哈采纳,获得70
58秒前
kyle完成签到 ,获得积分10
1分钟前
三杠完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294026
求助须知:如何正确求助?哪些是违规求助? 4444005
关于积分的说明 13831938
捐赠科研通 4327985
什么是DOI,文献DOI怎么找? 2375883
邀请新用户注册赠送积分活动 1371153
关于科研通互助平台的介绍 1336208