Identifying cropland non-agriculturalization with high representational consistency from bi-temporal high-resolution remote sensing images: From benchmark datasets to real-world application

水准点(测量) 高分辨率 一致性(知识库) 计算机科学 遥感 数据挖掘 人工智能 地理 地图学
作者
Zhendong Sun,Yanfei Zhong,Xinyu Wang,Liangpei Zhang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:212: 454-474 被引量:4
标识
DOI:10.1016/j.isprsjprs.2024.05.011
摘要

Cropland non-agriculturalization (CNA) refers to the conversion of cropland into construction land, woodland/garden/grassland, water body, or other non-agricultural land, which ultimately disrupts local agroecosystems and the cultivation and production of crops. Remote sensing technology is an important tool for large-area CNA detection, and remote sensing based methods that can be used for this task include the time-series analysis method and change detection from bi-temporal images. In particular, change detection methods using high-resolution remote sensing imagery have great potential for CNA detection, but enormous challenges do still remain. The large intra-class variance of cropland with different phenological stages and planting patterns leads to cropland areas being difficult to identify effectively, while certain features can be misidentified because they are similar to cropland, resulting in false alarms and missed detections in the results. There is also a lack of large-scale CNA datasets covering multiple change scenarios as data support. To address these problems, a lightweight model focused on CNA detection (CNANet) is proposed in this paper. Specifically, the uniquely crafted represent-consist-enhance (RCE) module is seamlessly integrated between the encoder and decoder components of CNANet to perform a contrast operation on the deep features extracted by the feature extractor. The RCE module is specifically designed to aggregate multiple cropland representations and extend the cropland representations from the confusing background, to achieve the purpose of reducing the intra-class reflectance differences and enhancing the model's perception of cropland. In addition, a large-scale high-resolution cropland non-agriculturalization (Hi-CNA) dataset was built for the CNA identification task, with a total of 6797 pairs of 512 × 512 images with semantic annotations. Compared to the existing datasets, the Hi-CNA dataset has the advantages of multiple phenological stages, multiple change scenarios, and multiple annotation types, in addition to the large data volume. The experimental results obtained in this study show that the benchmark methods tested on the Hi-CNA dataset can all achieve a good accuracy, proving the high-quality annotation of the dataset. The overall accuracy and F1-score of CNANet with the default settings reach 93.81 % and 78.9 %, respectively, achieving a superior accuracy, compared to the other benchmark methods, and demonstrating stronger perception of cropland changes. In addition, in two selected verification regions within the large-scale real-world CNA mapping results, the F1-score is 83.61 % and 50.87 %. The Hi-CNA can be downloaded from http://rsidea.whu.edu.cn/Hi-CNA_dataset.htm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
袁凯文发布了新的文献求助10
刚刚
共享精神应助老菜鸟321采纳,获得10
刚刚
WUWEI发布了新的文献求助10
1秒前
xiaoW完成签到,获得积分10
1秒前
3秒前
牛太虚完成签到,获得积分10
3秒前
SciGPT应助科多兽骑士采纳,获得10
3秒前
5秒前
gjm完成签到,获得积分10
5秒前
SciGPT应助zj采纳,获得10
6秒前
Ava应助阿湫采纳,获得10
6秒前
meng123完成签到,获得积分20
7秒前
x5kyi完成签到,获得积分10
8秒前
爆米花应助肖遥采纳,获得10
9秒前
Xx完成签到,获得积分10
9秒前
9秒前
12秒前
烟里戏完成签到 ,获得积分10
14秒前
shuangfeng1853完成签到 ,获得积分10
14秒前
林子青发布了新的文献求助10
14秒前
15秒前
aa完成签到,获得积分10
15秒前
CXC完成签到,获得积分10
15秒前
17秒前
Zzz发布了新的文献求助10
17秒前
上官若男应助袁凯文采纳,获得10
18秒前
18秒前
褚晣完成签到,获得积分10
18秒前
ATTENTION完成签到,获得积分10
19秒前
19秒前
周欣玙完成签到,获得积分10
19秒前
19秒前
学不懂数学应助as采纳,获得30
19秒前
传奇3应助YiWei采纳,获得10
20秒前
阿湫发布了新的文献求助10
20秒前
why完成签到,获得积分10
20秒前
20秒前
慕青应助Zard采纳,获得10
23秒前
肖遥发布了新的文献求助10
24秒前
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048