亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identifying cropland non-agriculturalization with high representational consistency from bi-temporal high-resolution remote sensing images: From benchmark datasets to real-world application

水准点(测量) 高分辨率 一致性(知识库) 计算机科学 遥感 数据挖掘 人工智能 地理 地图学
作者
Zhendong Sun,Yanfei Zhong,Xinyu Wang,Liangpei Zhang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:212: 454-474 被引量:18
标识
DOI:10.1016/j.isprsjprs.2024.05.011
摘要

Cropland non-agriculturalization (CNA) refers to the conversion of cropland into construction land, woodland/garden/grassland, water body, or other non-agricultural land, which ultimately disrupts local agroecosystems and the cultivation and production of crops. Remote sensing technology is an important tool for large-area CNA detection, and remote sensing based methods that can be used for this task include the time-series analysis method and change detection from bi-temporal images. In particular, change detection methods using high-resolution remote sensing imagery have great potential for CNA detection, but enormous challenges do still remain. The large intra-class variance of cropland with different phenological stages and planting patterns leads to cropland areas being difficult to identify effectively, while certain features can be misidentified because they are similar to cropland, resulting in false alarms and missed detections in the results. There is also a lack of large-scale CNA datasets covering multiple change scenarios as data support. To address these problems, a lightweight model focused on CNA detection (CNANet) is proposed in this paper. Specifically, the uniquely crafted represent-consist-enhance (RCE) module is seamlessly integrated between the encoder and decoder components of CNANet to perform a contrast operation on the deep features extracted by the feature extractor. The RCE module is specifically designed to aggregate multiple cropland representations and extend the cropland representations from the confusing background, to achieve the purpose of reducing the intra-class reflectance differences and enhancing the model's perception of cropland. In addition, a large-scale high-resolution cropland non-agriculturalization (Hi-CNA) dataset was built for the CNA identification task, with a total of 6797 pairs of 512 × 512 images with semantic annotations. Compared to the existing datasets, the Hi-CNA dataset has the advantages of multiple phenological stages, multiple change scenarios, and multiple annotation types, in addition to the large data volume. The experimental results obtained in this study show that the benchmark methods tested on the Hi-CNA dataset can all achieve a good accuracy, proving the high-quality annotation of the dataset. The overall accuracy and F1-score of CNANet with the default settings reach 93.81 % and 78.9 %, respectively, achieving a superior accuracy, compared to the other benchmark methods, and demonstrating stronger perception of cropland changes. In addition, in two selected verification regions within the large-scale real-world CNA mapping results, the F1-score is 83.61 % and 50.87 %. The Hi-CNA can be downloaded from http://rsidea.whu.edu.cn/Hi-CNA_dataset.htm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
12秒前
YB发布了新的文献求助10
14秒前
16秒前
华仔应助顺顺过过采纳,获得10
21秒前
23秒前
28秒前
shinble完成签到,获得积分10
28秒前
CcXiXi发布了新的文献求助10
29秒前
Lucas应助SIMON采纳,获得10
32秒前
Criminology34应助科研通管家采纳,获得10
34秒前
Criminology34应助科研通管家采纳,获得10
34秒前
Akim应助科研通管家采纳,获得10
34秒前
Akim应助科研通管家采纳,获得10
34秒前
科研通AI6应助科研通管家采纳,获得10
35秒前
35秒前
35秒前
好运常在完成签到 ,获得积分10
35秒前
米龙完成签到,获得积分10
38秒前
39秒前
Honor完成签到 ,获得积分10
40秒前
Ava应助YB采纳,获得10
41秒前
三三完成签到 ,获得积分10
42秒前
月亮门完成签到 ,获得积分10
43秒前
虚幻幻嫣发布了新的文献求助10
44秒前
充电宝应助木槿采纳,获得10
45秒前
马迦南完成签到 ,获得积分10
46秒前
52秒前
健忘蘑菇完成签到,获得积分10
53秒前
55秒前
55秒前
CC完成签到 ,获得积分10
57秒前
1分钟前
1分钟前
谷gu发布了新的文献求助10
1分钟前
1分钟前
有趣的饼干完成签到,获得积分10
1分钟前
爱吃煎饼果子的芋圆完成签到 ,获得积分10
1分钟前
1分钟前
苗条白枫完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5738972
求助须知:如何正确求助?哪些是违规求助? 5382083
关于积分的说明 15339021
捐赠科研通 4881737
什么是DOI,文献DOI怎么找? 2623886
邀请新用户注册赠送积分活动 1572547
关于科研通互助平台的介绍 1529310