Identifying cropland non-agriculturalization with high representational consistency from bi-temporal high-resolution remote sensing images: From benchmark datasets to real-world application

水准点(测量) 高分辨率 一致性(知识库) 计算机科学 遥感 数据挖掘 人工智能 地理 地图学
作者
Zhendong Sun,Yanfei Zhong,Xinyu Wang,Liangpei Zhang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:212: 454-474 被引量:18
标识
DOI:10.1016/j.isprsjprs.2024.05.011
摘要

Cropland non-agriculturalization (CNA) refers to the conversion of cropland into construction land, woodland/garden/grassland, water body, or other non-agricultural land, which ultimately disrupts local agroecosystems and the cultivation and production of crops. Remote sensing technology is an important tool for large-area CNA detection, and remote sensing based methods that can be used for this task include the time-series analysis method and change detection from bi-temporal images. In particular, change detection methods using high-resolution remote sensing imagery have great potential for CNA detection, but enormous challenges do still remain. The large intra-class variance of cropland with different phenological stages and planting patterns leads to cropland areas being difficult to identify effectively, while certain features can be misidentified because they are similar to cropland, resulting in false alarms and missed detections in the results. There is also a lack of large-scale CNA datasets covering multiple change scenarios as data support. To address these problems, a lightweight model focused on CNA detection (CNANet) is proposed in this paper. Specifically, the uniquely crafted represent-consist-enhance (RCE) module is seamlessly integrated between the encoder and decoder components of CNANet to perform a contrast operation on the deep features extracted by the feature extractor. The RCE module is specifically designed to aggregate multiple cropland representations and extend the cropland representations from the confusing background, to achieve the purpose of reducing the intra-class reflectance differences and enhancing the model's perception of cropland. In addition, a large-scale high-resolution cropland non-agriculturalization (Hi-CNA) dataset was built for the CNA identification task, with a total of 6797 pairs of 512 × 512 images with semantic annotations. Compared to the existing datasets, the Hi-CNA dataset has the advantages of multiple phenological stages, multiple change scenarios, and multiple annotation types, in addition to the large data volume. The experimental results obtained in this study show that the benchmark methods tested on the Hi-CNA dataset can all achieve a good accuracy, proving the high-quality annotation of the dataset. The overall accuracy and F1-score of CNANet with the default settings reach 93.81 % and 78.9 %, respectively, achieving a superior accuracy, compared to the other benchmark methods, and demonstrating stronger perception of cropland changes. In addition, in two selected verification regions within the large-scale real-world CNA mapping results, the F1-score is 83.61 % and 50.87 %. The Hi-CNA can be downloaded from http://rsidea.whu.edu.cn/Hi-CNA_dataset.htm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助apricity采纳,获得10
刚刚
33完成签到,获得积分0
刚刚
张润泽完成签到 ,获得积分10
刚刚
世纪飞虎发布了新的文献求助10
刚刚
1秒前
阳光鹭洋发布了新的文献求助10
1秒前
Vince完成签到,获得积分10
2秒前
万能图书馆应助咕嘟采纳,获得10
2秒前
快去练完成签到,获得积分10
3秒前
Qiancheng完成签到,获得积分10
4秒前
L91发布了新的文献求助10
5秒前
快去练发布了新的文献求助10
5秒前
积极纲完成签到,获得积分10
6秒前
1122完成签到 ,获得积分10
7秒前
lucky完成签到,获得积分10
7秒前
7秒前
Ava应助俊逸的翅膀采纳,获得10
7秒前
8秒前
永政sci完成签到,获得积分10
8秒前
阳光鹭洋完成签到,获得积分10
9秒前
11秒前
13秒前
13秒前
储物间完成签到,获得积分10
14秒前
14秒前
14秒前
syl发布了新的文献求助10
14秒前
14秒前
L91完成签到,获得积分10
14秒前
姚盈盈发布了新的文献求助10
16秒前
16秒前
烂漫的沂完成签到,获得积分10
17秒前
韩梅发布了新的文献求助10
17秒前
冷酷寒荷发布了新的文献求助10
17秒前
闫什发布了新的文献求助10
18秒前
凤梨罐头发布了新的文献求助10
18秒前
apricity发布了新的文献求助10
18秒前
世纪飞虎完成签到,获得积分10
19秒前
19秒前
树叶有专攻完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589017
求助须知:如何正确求助?哪些是违规求助? 4671762
关于积分的说明 14789530
捐赠科研通 4627020
什么是DOI,文献DOI怎么找? 2532031
邀请新用户注册赠送积分活动 1500644
关于科研通互助平台的介绍 1468373