降级(电信)
化学
土霉素
活性炭
化学工程
光化学
有机化学
生物化学
吸附
抗生素
计算机科学
电信
工程类
作者
Xixi Di,Xia Zeng,Tian Tang,Cheng‐Di Dong,Yixuan Shi,Wei Wang,Zhifeng Liu,Lingxia Jin,Xiaohui Ji,Xianzhao Shao
标识
DOI:10.1016/j.seppur.2024.127877
摘要
The application of heterogeneous metal-free catalysis for non-radical peroxymonosulfate (PMS) oxidation is of great significance because of its low environmental effects and mild oxidant dosage. The purpose of this study was to investigate the activation mechanism of PMS using acid-modified activated carbon and oxytetracycline (OTC) as a representative pollutant. Modified activated carbon (MAC)/PMS system was capable of achieving 100 % degradation efficiency of OTC within 60 min, with an observed rate constant (kobs) of 0.0414 min−1. The degradation of OTC is dominated by non-radical oxidation pathways involved in mediated singlet oxygen (1O2) and electron-transfer process through electron paramagnetic resonance (EPR) and radicals quenching studies. The activation of PMS is attributed to the structural defects of MAC, persistent free radicals, and oxygen functional groups such as C-OOH. Moreover, the MAC/PMS system consistently demonstrates high and reliable contaminant removal in various water matrices. A continuous-flow device utilizing MAC shows excellent performance in purifying micro-polluted water. Additionally, the degradation pathways of pollutants and changes in toxicity during the degradation process were identified through density functional theory (DFT) calculations, liquid chromatography-mass spectrometry (LC-MS), and toxicological analysis. Finally, the cultivation of green beans, peas, and wheat was found to significantly decrease the toxicity of contaminated water through degradation. This study proposes a low-cost method to enhance the activation pathway of non-radical PMS by utilizing modified activated carbon materials for pollutant remediation.
科研通智能强力驱动
Strongly Powered by AbleSci AI