清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Classification of Fruits and its Quality Prediction using Deep Learning

成熟度 人工智能 计算机科学 卷积神经网络 质量(理念) 深度学习 机器学习 模式识别(心理学) 园艺 生物 认识论 哲学 成熟
作者
K. Sangeetha,P. Vishnu Raja,S Siranjeevi,Jami Venkata Suman,S Rohith
标识
DOI:10.1109/icicv62344.2024.00059
摘要

Fruit classification is an indispensable component of the modern world, with applications ranging from agriculture and food production to retail and distribution. Accurate classification of fruits ensures quality control and helps in streamlining supply chains. However, fruit classification is a complex endeavor, primarily due to the intrinsic diversity of fruits in terms of size, shape, color, and other characteristics. The challenge intensifies when the goal is not only to identify fresh fruits but also to detect and classify rotten or spoiled ones. The existing models and systems designed for fruit classification have been proficient in categorizing fresh, visually appealing fruits. These models have found widespread utility in industries such as agriculture and supermarkets, where the goal is to separate fruits that meet certain quality standards. However, they fall short when it comes to addressing the critical issue of identifying and classifying fruits that are no longer fit for consumption, which is equally important to prevent waste and maintain quality control. To bridge this gap, this project develops a comprehensive approach. It begins with the acquisition of a dataset that includes both fresh and rotten fruits. By combining the power of deep learning, specifically Convolutional Neural Networks (CNN), the project aims to classify fruits into distinct categories. The CNN model is trained to differentiate between fresh and rotten fruits by learning from a diverse set of images. In addition to classification, the project employs the capabilities of OpenCV, a popular computer vision library, to assess the ripeness of fruits based on the color. OpenCV provides a robust platform for analyzing color variations in fruit images. By leveraging this color analysis, the project can not only classify fruits but also determine their ripeness levels, providing a more holistic evaluation of fruit quality. The integration of CNN -based classification and OpenCV-driven ripeness assessment creates a comprehensive and practical solution for fruit quality evaluation. The proposed approach will have a significant impact across various sectors, from agriculture, where it aids in efficient fruit harvesting and sorting, to retail, where it ensures that only the finest produce reaches the consumers. Ultimately, this project seeks to address the challenges of fruit classification in terms of heterogeneity, offering a valuable tool for modern quality control and waste reduction efforts in the fruit industry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xirang2发布了新的文献求助10
4秒前
LiangRen完成签到 ,获得积分10
10秒前
11秒前
火星上惜天完成签到 ,获得积分10
12秒前
yy完成签到 ,获得积分10
17秒前
qinghe完成签到 ,获得积分10
33秒前
种下梧桐树完成签到 ,获得积分10
37秒前
帆帆帆完成签到 ,获得积分20
45秒前
善学以致用应助超帅的萤采纳,获得10
46秒前
54秒前
55秒前
超帅的萤发布了新的文献求助10
59秒前
安鹏应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
安鹏应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
yellowonion完成签到 ,获得积分10
1分钟前
lyw发布了新的文献求助30
1分钟前
1分钟前
Oliver完成签到 ,获得积分10
1分钟前
如意2023完成签到 ,获得积分10
1分钟前
拉长的秋白完成签到 ,获得积分10
1分钟前
pengchy完成签到,获得积分10
2分钟前
米奇妙妙屋完成签到,获得积分10
2分钟前
2分钟前
Wenfeifei完成签到,获得积分10
2分钟前
毛毛弟完成签到 ,获得积分10
2分钟前
2分钟前
程硕发布了新的文献求助10
2分钟前
358489228完成签到,获得积分10
2分钟前
朝夕之晖完成签到,获得积分10
2分钟前
真的OK完成签到,获得积分0
2分钟前
BowieHuang完成签到,获得积分0
2分钟前
呵呵哒完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764758
求助须知:如何正确求助?哪些是违规求助? 5554914
关于积分的说明 15406592
捐赠科研通 4899732
什么是DOI,文献DOI怎么找? 2635956
邀请新用户注册赠送积分活动 1584135
关于科研通互助平台的介绍 1539403