Classification of Fruits and its Quality Prediction using Deep Learning

成熟度 人工智能 计算机科学 卷积神经网络 质量(理念) 深度学习 机器学习 模式识别(心理学) 园艺 生物 认识论 哲学 成熟
作者
K. Sangeetha,P. Vishnu Raja,S Siranjeevi,Jami Venkata Suman,S Rohith
标识
DOI:10.1109/icicv62344.2024.00059
摘要

Fruit classification is an indispensable component of the modern world, with applications ranging from agriculture and food production to retail and distribution. Accurate classification of fruits ensures quality control and helps in streamlining supply chains. However, fruit classification is a complex endeavor, primarily due to the intrinsic diversity of fruits in terms of size, shape, color, and other characteristics. The challenge intensifies when the goal is not only to identify fresh fruits but also to detect and classify rotten or spoiled ones. The existing models and systems designed for fruit classification have been proficient in categorizing fresh, visually appealing fruits. These models have found widespread utility in industries such as agriculture and supermarkets, where the goal is to separate fruits that meet certain quality standards. However, they fall short when it comes to addressing the critical issue of identifying and classifying fruits that are no longer fit for consumption, which is equally important to prevent waste and maintain quality control. To bridge this gap, this project develops a comprehensive approach. It begins with the acquisition of a dataset that includes both fresh and rotten fruits. By combining the power of deep learning, specifically Convolutional Neural Networks (CNN), the project aims to classify fruits into distinct categories. The CNN model is trained to differentiate between fresh and rotten fruits by learning from a diverse set of images. In addition to classification, the project employs the capabilities of OpenCV, a popular computer vision library, to assess the ripeness of fruits based on the color. OpenCV provides a robust platform for analyzing color variations in fruit images. By leveraging this color analysis, the project can not only classify fruits but also determine their ripeness levels, providing a more holistic evaluation of fruit quality. The integration of CNN -based classification and OpenCV-driven ripeness assessment creates a comprehensive and practical solution for fruit quality evaluation. The proposed approach will have a significant impact across various sectors, from agriculture, where it aids in efficient fruit harvesting and sorting, to retail, where it ensures that only the finest produce reaches the consumers. Ultimately, this project seeks to address the challenges of fruit classification in terms of heterogeneity, offering a valuable tool for modern quality control and waste reduction efforts in the fruit industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴小胖发布了新的文献求助10
1秒前
1秒前
2秒前
布丁果冻完成签到,获得积分10
3秒前
4秒前
5秒前
gcl应助hhllhh采纳,获得30
5秒前
5秒前
Charlie发布了新的文献求助20
6秒前
Jian发布了新的文献求助10
7秒前
hu完成签到,获得积分10
8秒前
皮皮卡发布了新的文献求助10
9秒前
聪慧烙完成签到,获得积分10
9秒前
11秒前
12秒前
zorro3574发布了新的文献求助10
12秒前
yar应助整齐灵阳采纳,获得10
14秒前
明明明完成签到,获得积分10
15秒前
linxy发布了新的文献求助10
16秒前
muyi完成签到,获得积分10
17秒前
Orange应助三物采纳,获得10
19秒前
薄荷微凉完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
22秒前
24秒前
Orange应助zorro3574采纳,获得10
24秒前
VLH发布了新的文献求助10
25秒前
yydragen应助lixinlong采纳,获得10
27秒前
31秒前
熊熊发布了新的文献求助10
31秒前
11完成签到,获得积分10
32秒前
32秒前
33秒前
苹果井发布了新的文献求助10
33秒前
33秒前
coolkid应助hhllhh采纳,获得10
34秒前
butaishao发布了新的文献求助10
34秒前
彭于晏应助文欣采纳,获得10
36秒前
微笑寻凝发布了新的文献求助10
36秒前
六月完成签到,获得积分10
37秒前
37秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959791
求助须知:如何正确求助?哪些是违规求助? 3506016
关于积分的说明 11127539
捐赠科研通 3237976
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871758
科研通“疑难数据库(出版商)”最低求助积分说明 803019