STFT-TCAN: A TCN-attention based multivariate time series anomaly detection architecture with time-frequency analysis for cyber-industrial systems

计算机科学 异常检测 短时傅里叶变换 频域 数据挖掘 人工智能 多元统计 时间序列 时频分析 时域 故障检测与隔离 模式识别(心理学) 机器学习 傅里叶变换 计算机视觉 傅里叶分析 数学 数学分析 滤波器(信号处理) 执行机构
作者
Fei-Fan Tu,Liu Dong-jie,Zhiwei Yan,Xiao-Bo Jin,Guang-Gang Geng
出处
期刊:Computers & Security [Elsevier]
卷期号:144: 103961-103961
标识
DOI:10.1016/j.cose.2024.103961
摘要

Networks and industrial systems play a pivotal role in modern society, and their security has garnered increasing attention. Anomalies within industrial equipment may propagate through fault transmission, leading to a cascade of failures. Additionally, cyberattacks on equipment can result in significant losses. Therefore, in the realm of industrial and cyberspace domains, an effective multivariate time series anomaly detection system for monitoring equipment is instrumental in ensuring the healthy operation of the machinery. Nevertheless, detecting anomalies in numerous time series remains challenging, stemming from the absence of anomaly labels and the complexity of the data patterns. Existing algorithms predominantly concentrate on modeling within the time domain, falling short in fully leveraging the informative features present in frequency domain data, resulting in diminished detection performance. This paper introduces STFT-TCAN, a model for anomaly detection in time series that seamlessly integrates information from both time and frequency domains for extracting data features. Sliding windows and the Short Time Fourier Transform (STFT) are utilized to construct a frequency matrix, effectively amalgamating the characteristics of both time and frequency domains within the time series. Furthermore, the model employs Temporal Convolutional Networks (TCN) and Transformer attention mechanisms (which combined to form the TCAN module) to capture the features of multivariate time series, thereby resulting in heightened detection accuracy. The proposed model undergoes validation on six publicly available datasets, showcasing the superior performance of the STFT-TCAN model in comparison to current baseline methods. It adeptly extracts features from both frequency and time domains in sequential data, thereby achieving state-of-the-art performance in tasks related to anomaly detection in multivariate time series.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
unique不二发布了新的文献求助10
刚刚
小二郎应助GEYUAN采纳,获得10
2秒前
赘婿应助缓慢雅青采纳,获得10
2秒前
3秒前
Wang完成签到,获得积分20
3秒前
pzk发布了新的文献求助10
4秒前
4秒前
李政浩发布了新的文献求助10
4秒前
三金发布了新的文献求助10
4秒前
勇敢牛牛完成签到 ,获得积分20
6秒前
毛豆应助Hyccccc采纳,获得10
7秒前
8秒前
ww发布了新的文献求助30
9秒前
1751587229发布了新的文献求助10
9秒前
9秒前
10秒前
hetao发布了新的文献求助10
10秒前
资灵竹完成签到,获得积分10
11秒前
勇敢牛牛关注了科研通微信公众号
11秒前
汉堡包应助zz采纳,获得10
11秒前
11秒前
13秒前
13秒前
传奇3应助kong采纳,获得10
13秒前
007发布了新的文献求助10
14秒前
niuma发布了新的文献求助10
15秒前
乐乐应助qwe采纳,获得10
15秒前
16秒前
ardejiang发布了新的文献求助10
18秒前
21秒前
23秒前
24秒前
24秒前
一杯六一发布了新的文献求助10
25秒前
Owen应助Adrenaline采纳,获得10
26秒前
27秒前
天天快乐应助sisyphus采纳,获得10
27秒前
27秒前
yar发布了新的文献求助10
28秒前
科研通AI2S应助一只西瓜茶采纳,获得10
30秒前
高分求助中
Востребованный временем 2500
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422515
求助须知:如何正确求助?哪些是违规求助? 3022733
关于积分的说明 8902510
捐赠科研通 2710194
什么是DOI,文献DOI怎么找? 1486341
科研通“疑难数据库(出版商)”最低求助积分说明 687038
邀请新用户注册赠送积分活动 682261