介孔材料
异质结
材料科学
离子
碳纤维
纳米技术
化学工程
光电子学
化学
复合材料
复合数
工程类
催化作用
有机化学
作者
Fangli Yang,Ke Lv,Xu Zhao,Derui Kong,Na Kong,Zirong Luo,Jinlong Tao,Ji Zhou,Joselito M. Razal,Jizhen Zhang
标识
DOI:10.1016/j.cej.2024.153246
摘要
The development of electrode materials with a hierarchically porous structure and good electrical connection is key to improving the charging-discharging rate and energy density of supercapacitors. However, the restacking issue of two-dimensional nanomaterials, such as MXene, seriously hinders the diffusion of electrolyte ions. Different from the extensively used sacrificing template method, a hierarchical heterostructure of electrically conducting mesoporous hollow carbon spheres (MHCS) and MXene composite electrode is designed and achieved through simple vacuum filtration without further template removing procedures. This direct preparation strategy not only effectively improves the specific surface area of the electrode but also enhances the abundant surface pores and good conductivity of MHCS, improving the penetration of the electrolyte solution and shortening the ion transport path, leading to a pronounced improvement in specific capacitance and rate performance of the electrodes. Additionally, the influence of sheath thickness of MHCSs on ion transfer rate is deeply discussed. The introduction of carbon nanotubes (CNTs) further improves conductivity and stability while maintaining good flexibility. Consequently, the MXene/MHCS/CNT film delivers a high specific capacitance (395F g−1 at 2 mV s−1), outstanding rate performance (70.9 % at 1000 mV s−1), and excellent cycling stability (98.3 % capacity retention after 10,000 cycles). Furthermore, the assembled symmetric supercapacitor provides a maximum energy density of 14.48 Wh kg−1. This work provides a quick and effective approach for constructing high performance 3D MXene architectures for fast ion transfer electrodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI