Discordance between Remnant Cholesterol and Low-density Lipoprotein Cholesterol Predicts Cardiovascular Disease: the Kailuan Prospective Cohort Study

医学 危险系数 内科学 胆固醇 冲程(发动机) 比例危险模型 前瞻性队列研究 百分位 高密度脂蛋白 心脏病学 胃肠病学 内分泌学 置信区间 统计 机械工程 工程类 数学
作者
Yijun Zhang,Shouling Wu,Xue Tian,Qin Xu,Xue Xia,Xiaoli Zhang,Jing Li,Shuohua Chen,Fen Liu,Anxin Wang
出处
期刊:Hellenic Journal of Cardiology [Elsevier BV]
被引量:2
标识
DOI:10.1016/j.hjc.2024.05.002
摘要

Previous studies have shown that remnant cholesterol (RC) was associated with cardiovascular disease (CVD). The study aim to identify the association of RC and the discordance between RC and lipoprotein cholesterol (LDL-C) with CVD. Data was obtained from the Kailuan study. RC was calculated as the non high-density lipoprotein cholesterol minus LDL-C. Discordant RC and LDL-C were defined by percentile difference and clinical cutoff points. Cox proportional hazard models were used to explore the association of RC and the discordance between RC and LDL-C with CVD. Total of 96,769 participants were inclued, with the median age of 51.61 years, 79.56% of male. There was a significant association between RC levels and the risk of CVD, with an HR of 1.10 (95% CI, 1.08–1.13) in the continuous analysis. The discordantly high RC group had a significant increase in CVD, MI, and stroke risk, with HRs of 1.18 (95%CI, 1.10–1.26), 1.23 (1.06–1.43), and 1.15 (1.07–1.24), respectively. Compared to the group with low LDL-C and low RC, the group with low LDL-C and high RC had significantly higher incidences of CVD (HR, 1.33 [95% CI, 1.26–1.40]), MI (HR, 1.59 [95% CI, 1.41–1.80]), and stroke (HR, 1.28 [95% CI, 1.20–1.35]). Elevated levels of RC and discordantly high RC with LDL-C both were associated with the risk of CVD, MI, and stroke. These findings demonstrate the clinical significance of identifying residual risk related to RC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
无限鞅发布了新的文献求助10
1秒前
Candy发布了新的文献求助10
1秒前
熹微发布了新的文献求助10
1秒前
喜悦的含雁完成签到 ,获得积分10
1秒前
子车茗应助痴情的博超采纳,获得30
2秒前
dayday发布了新的文献求助10
2秒前
ElsaFan完成签到,获得积分10
2秒前
七八九完成签到,获得积分10
2秒前
2秒前
scott_CZA关注了科研通微信公众号
2秒前
zlx完成签到,获得积分10
2秒前
彭于晏应助fufu采纳,获得10
3秒前
晨时明月发布了新的文献求助10
3秒前
3秒前
英俊的铭应助佳期如梦采纳,获得10
3秒前
好的完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
小宋发布了新的文献求助10
5秒前
6秒前
呆萌松鼠完成签到,获得积分10
6秒前
7秒前
phenory发布了新的文献求助10
7秒前
所所应助Siri采纳,获得10
7秒前
大模型应助RONG采纳,获得10
7秒前
9秒前
9秒前
云飞扬完成签到,获得积分10
9秒前
BowenShi发布了新的文献求助10
9秒前
茉莉花关注了科研通微信公众号
10秒前
Andone完成签到,获得积分10
10秒前
10秒前
10秒前
科目三应助XXYYZZ采纳,获得10
10秒前
啦啦啦发布了新的文献求助10
10秒前
小鱼同学发布了新的文献求助10
10秒前
xxiix发布了新的文献求助10
11秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3743833
求助须知:如何正确求助?哪些是违规求助? 3286494
关于积分的说明 10050575
捐赠科研通 3003003
什么是DOI,文献DOI怎么找? 1648680
邀请新用户注册赠送积分活动 784737
科研通“疑难数据库(出版商)”最低求助积分说明 750832