Molecular fingerprint-aided prediction of organic solute rejection in reverse osmosis and nanofiltration

纳滤 反渗透 可解释性 指纹(计算) 化学 生物系统 分子描述符 超滤(肾) 渗透 工作(物理) 数量结构-活动关系 工艺工程 计算机科学 色谱法 人工智能 热力学 工程类 生物化学 物理 立体化学 生物
作者
Sangsuk Lee,Michael R. Shirts,Anthony P. Straub
出处
期刊:Journal of Membrane Science [Elsevier BV]
卷期号:705: 122927-122927 被引量:12
标识
DOI:10.1016/j.memsci.2024.122927
摘要

Reverse osmosis and nanofiltration are used to purify feedwaters that contain a range of harmful organic solutes. The rejection of many of these solutes is poorly understood due to our limited ability to experimentally measure removal of any given compound. In this work, we present a machine learning approach that predicts organic solute rejection using molecular fingerprints that encode chemical structure features, such as functional groups and rings, into simple binary vectors. We trained machine learning models on a database of 1906 membrane rejection measurements including 228 organic compounds and 39 types of reverse osmosis and nanofiltration membranes. Three types of molecular fingerprint models (structural key, circular, and path based) were compared, and we observed that the Molecular Access System (MACCS) structural key had high performance (coefficient of determination of 0.87 with the testing set), fast calculation time due to its short bit-length, and easy interpretability. In addition to evaluating prediction performance, Shapley Additive Explanations (SHAP) analysis was implemented to gain a better molecular-scale understanding of membrane rejection, identifying molecular substructures that are important in determining their rejection. Overall, this work presents a method to predict the rejection of compounds that uses readily available molecular structure information and improves our ability to understand rejection mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李萌发布了新的文献求助10
刚刚
浩二发布了新的文献求助10
2秒前
浩二发布了新的文献求助10
2秒前
CipherSage应助端庄向雁采纳,获得10
2秒前
muni应助吴豁采纳,获得10
3秒前
科研通AI6应助俊逸的难破采纳,获得10
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
CC完成签到,获得积分10
3秒前
poletar发布了新的文献求助10
4秒前
qaz发布了新的文献求助10
4秒前
Tomsen发布了新的文献求助10
4秒前
5秒前
好怀念WE完成签到,获得积分20
5秒前
5秒前
6秒前
科研通AI6应助学术悍匪采纳,获得10
7秒前
李健的小迷弟应助李萌采纳,获得10
7秒前
han发布了新的文献求助10
9秒前
9秒前
WU完成签到,获得积分10
10秒前
mqthhh发布了新的文献求助10
10秒前
多多关注了科研通微信公众号
11秒前
今后应助猪猪hero采纳,获得30
11秒前
sunshine完成签到,获得积分10
12秒前
12秒前
小蘑菇应助kyhappy_2002采纳,获得10
13秒前
CodeCraft应助keweic采纳,获得10
13秒前
黄学无发布了新的文献求助10
13秒前
13秒前
Youngcy应助lmg采纳,获得10
14秒前
14秒前
14秒前
15秒前
zwd发布了新的文献求助10
15秒前
今后应助zls采纳,获得10
16秒前
xiaoyinni应助张三采纳,获得10
16秒前
17秒前
无辜书南发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4942644
求助须知:如何正确求助?哪些是违规求助? 4208241
关于积分的说明 13081377
捐赠科研通 3987311
什么是DOI,文献DOI怎么找? 2183028
邀请新用户注册赠送积分活动 1198648
关于科研通互助平台的介绍 1111020