Pressure-induced emission in 0D metal halide (EATMP)SbBr5 by regulating exciton-phonon coupling

卤化物 激子 联轴节(管道) 声子 金属 材料科学 凝聚态物理 物理 化学 无机化学 冶金
作者
Jiayuan Liang,Xin Mi,Songhao Guo,Hui Luo,Kejun Bu,Tonghuan Fu,menglin duan,Yang Wang,Qingyang Hu,Ren‐Gen Xiong,Peng Qin,Fuqiang Huang,Xujie Lü
出处
期刊:Chinese Journal of Structural Chemistry [Elsevier BV]
卷期号:43 (7): 100333-100333 被引量:1
标识
DOI:10.1016/j.cjsc.2024.100333
摘要

Zero-dimensional (0D) hybrid metal halides are considered as promising light-emitting materials due to their unique broadband emission from self-trapped excitons (STEs). Despite substantial progress in the development of these materials, the photoluminescence quantum yields (PLQY) of hybrid Sb-Br analogs have not fully realized the capabilities of these materials, necessitating a better fundamental understanding of the structure–property relationship. Here, we have achieved a pressure-induced emission in 0D (EATMP)SbBr5 (EATMP = (2-aminoethyl)trimethylphosphanium) and the underlying mechanisms are investigated using in situ experimental characterization and first-principles calculations. The pressure-induced reduction in the overlap between STE states and the ground state results in the suppression of phonon-assisted non-radiative decay. The PL evolution is systematically demonstrated to be controlled by the pressure-regulated exciton–phonon coupling, which can be quantified using Huang–Rhys factor S. Through detailed studies of the S-PLQY relation in a series of 0D hybrid antimony halides, we establish a quantitative structure–property relationship that regulating S value toward 21 leads to the optimized emission. This work not only sheds light on pressure-induced emission in 0D hybrid metal halides but also provides valuable insights into the design principles for enhancing the PLQY in this class of materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tumankol完成签到 ,获得积分10
刚刚
下一周完成签到,获得积分10
1秒前
1秒前
马户的崛起完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
3秒前
Glitter完成签到 ,获得积分10
3秒前
感性的夜玉完成签到,获得积分10
3秒前
JamesPei应助111采纳,获得10
3秒前
淀粉肠发布了新的文献求助10
4秒前
赘婿应助欧贤书采纳,获得10
4秒前
伶俐皮卡丘完成签到,获得积分10
4秒前
lzh发布了新的文献求助10
4秒前
Huang完成签到 ,获得积分10
4秒前
赵西里完成签到,获得积分10
4秒前
现代秋白发布了新的文献求助30
4秒前
诸葛凤雏完成签到,获得积分10
5秒前
SARON完成签到 ,获得积分10
5秒前
邹雄辉完成签到,获得积分20
5秒前
5秒前
6秒前
找找找文献完成签到,获得积分10
6秒前
予初完成签到,获得积分20
6秒前
6秒前
6秒前
7秒前
lll发布了新的文献求助10
7秒前
leezz发布了新的文献求助30
7秒前
完美世界应助橙海晚风采纳,获得10
7秒前
8秒前
8秒前
雷红发布了新的文献求助10
8秒前
善学以致用应助张宇采纳,获得10
8秒前
无花果应助小菜采纳,获得10
9秒前
9秒前
JLUO完成签到,获得积分10
10秒前
荐辛奇发布了新的文献求助10
10秒前
CYS完成签到,获得积分10
11秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The New Psychology of Health 500
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5201977
求助须知:如何正确求助?哪些是违规求助? 4381677
关于积分的说明 13643145
捐赠科研通 4238843
什么是DOI,文献DOI怎么找? 2325665
邀请新用户注册赠送积分活动 1323401
关于科研通互助平台的介绍 1275443