Exploring and Exploiting Multi-modality Uncertainty for Tumor Segmentation on PET/CT

模态(人机交互) 模式 计算机科学 背景(考古学) 分割 人工智能 机器学习 数据挖掘 古生物学 社会科学 社会学 生物
作者
Susu Kang,Yixiong Kang,Shan Tan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (9): 5435-5446
标识
DOI:10.1109/jbhi.2024.3397332
摘要

Despite the success of deep learning methods in multi-modality segmentation tasks, they typically produce a deterministic output, neglecting the underlying uncertainty. The absence of uncertainty could lead to over-confident predictions with catastrophic consequences, particularly in safety-critical clinical applications. Recently, uncertainty estimation has attracted increasing attention, offering a measure of confidence associated with machine decisions. Nonetheless, existing uncertainty estimation approaches primarily focus on single-modality networks, leaving the uncertainty of multi-modality networks a largely under-explored domain. In this study, we present the first exploration of multi-modality uncertainties in the context of tumor segmentation on PET/CT. Concretely, we assessed four well-established uncertainty estimation approaches across various dimensions, including segmentation performance, uncertainty quality, comparison to single-modality uncertainties, and correlation to the contradictory information between modalities. Through qualitative and quantitative analyses, we gained valuable insights into what benefits multi-modality uncertainties derive, what information multi-modality uncertainties capture, and how multi-modality uncertainties correlate to information from single modalities. Drawing from these insights, we introduced a novel uncertainty-driven loss, which incentivized the network to effectively utilize the complementary information between modalities. The proposed approach outperformed the backbone network by 4.53 and 2.92 Dices in percentages on two PET/CT datasets while achieving lower uncertainties. This study not only advanced the comprehension of multi-modality uncertainties but also revealed the potential benefit of incorporating them into the segmentation network. The code is available at https://github.com/HUST-Tan/MMUE .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
InfoNinja应助木槿花开采纳,获得20
刚刚
1秒前
2秒前
诸觅双发布了新的文献求助10
2秒前
2秒前
3秒前
Tink完成签到,获得积分10
4秒前
6秒前
没名字完成签到,获得积分10
6秒前
7秒前
在水一方应助曲线采纳,获得10
7秒前
慕青应助Smiling采纳,获得20
8秒前
LeiX发布了新的文献求助10
9秒前
10秒前
orixero应助十一克拉采纳,获得10
11秒前
求助求助完成签到,获得积分20
11秒前
科研通AI2S应助小巧雁菱采纳,获得10
12秒前
赵先森完成签到 ,获得积分10
12秒前
13秒前
will214发布了新的文献求助10
14秒前
NexusExplorer应助2123121321321采纳,获得10
14秒前
筷子吃不了面完成签到,获得积分10
15秒前
李昕123发布了新的文献求助10
16秒前
曲线完成签到,获得积分10
17秒前
贾不可发布了新的文献求助10
17秒前
18秒前
FreeRice发布了新的文献求助10
18秒前
让我乔乔完成签到,获得积分10
19秒前
甜甜可甜了完成签到,获得积分20
19秒前
有机会吗完成签到,获得积分10
19秒前
激动的雁玉完成签到 ,获得积分10
21秒前
文艺的书萱完成签到,获得积分10
22秒前
22秒前
yy发布了新的文献求助10
23秒前
寻觅发布了新的文献求助10
25秒前
CipherSage应助张小龙采纳,获得10
26秒前
哎嘿应助violetlishu采纳,获得10
27秒前
快乐小豚鼠完成签到,获得积分10
27秒前
Clover04应助科研小郭采纳,获得50
28秒前
独特的半芹完成签到,获得积分10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148089
求助须知:如何正确求助?哪些是违规求助? 2799137
关于积分的说明 7833616
捐赠科研通 2456348
什么是DOI,文献DOI怎么找? 1307222
科研通“疑难数据库(出版商)”最低求助积分说明 628086
版权声明 601655