Exploring and Exploiting Multi-Modality Uncertainty for Tumor Segmentation on PET/CT

模态(人机交互) 模式 计算机科学 背景(考古学) 分割 人工智能 机器学习 数据挖掘 古生物学 社会科学 社会学 生物
作者
Susu Kang,Yixiong Kang,Shan Tan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (9): 5435-5446
标识
DOI:10.1109/jbhi.2024.3397332
摘要

Despite the success of deep learning methods in multi-modality segmentation tasks, they typically produce a deterministic output, neglecting the underlying uncertainty. The absence of uncertainty could lead to over-confident predictions with catastrophic consequences, particularly in safety-critical clinical applications. Recently, uncertainty estimation has attracted increasing attention, offering a measure of confidence associated with machine decisions. Nonetheless, existing uncertainty estimation approaches primarily focus on single-modality networks, leaving the uncertainty of multi-modality networks a largely under-explored domain. In this study, we present the first exploration of multi-modality uncertainties in the context of tumor segmentation on PET/CT. Concretely, we assessed four well-established uncertainty estimation approaches across various dimensions, including segmentation performance, uncertainty quality, comparison to single-modality uncertainties, and correlation to the contradictory information between modalities. Through qualitative and quantitative analyses, we gained valuable insights into what benefits multi-modality uncertainties derive, what information multi-modality uncertainties capture, and how multi-modality uncertainties correlate to information from single modalities. Drawing from these insights, we introduced a novel uncertainty-driven loss, which incentivized the network to effectively utilize the complementary information between modalities. The proposed approach outperformed the backbone network by 4.53 and 2.92 Dices in percentages on two PET/CT datasets while achieving lower uncertainties. This study not only advanced the comprehension of multi-modality uncertainties but also revealed the potential benefit of incorporating them into the segmentation network. The code is available at https://github.com/HUST-Tan/MMUE .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
叶泽完成签到,获得积分10
1秒前
1秒前
1秒前
默默电灯胆完成签到,获得积分10
1秒前
孤兰完成签到,获得积分10
1秒前
共享精神应助111111采纳,获得10
2秒前
atcha完成签到,获得积分10
3秒前
Adzuki0812发布了新的文献求助10
3秒前
gys完成签到,获得积分10
3秒前
4秒前
5秒前
Sumia发布了新的文献求助10
5秒前
6秒前
孤独巡礼完成签到,获得积分10
6秒前
yio完成签到,获得积分10
6秒前
领导范儿应助RC_Wang采纳,获得10
7秒前
华仔应助淡然幻波采纳,获得10
7秒前
7秒前
有本事1234完成签到,获得积分10
7秒前
xxxh9完成签到 ,获得积分10
8秒前
NexusExplorer应助靓丽代柔采纳,获得10
8秒前
8秒前
8秒前
丑麒发布了新的文献求助10
10秒前
英俊的铭应助日暖月寒采纳,获得10
10秒前
meym发布了新的文献求助10
10秒前
Sylvia卉发布了新的文献求助10
10秒前
11秒前
11秒前
充电宝应助等待燕麦片采纳,获得10
13秒前
xxxh9关注了科研通微信公众号
13秒前
雪白幻雪完成签到 ,获得积分10
14秒前
YY发布了新的文献求助10
14秒前
安静咖啡豆完成签到,获得积分10
15秒前
一盒火柴完成签到,获得积分10
15秒前
15秒前
善学以致用应助Venus采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262045
求助须知:如何正确求助?哪些是违规求助? 4423178
关于积分的说明 13768730
捐赠科研通 4297627
什么是DOI,文献DOI怎么找? 2358073
邀请新用户注册赠送积分活动 1354468
关于科研通互助平台的介绍 1315580