Exploring and Exploiting Multi-Modality Uncertainty for Tumor Segmentation on PET/CT

模态(人机交互) 模式 计算机科学 背景(考古学) 分割 人工智能 机器学习 数据挖掘 古生物学 社会科学 社会学 生物
作者
Susu Kang,Yixiong Kang,Shan Tan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (9): 5435-5446
标识
DOI:10.1109/jbhi.2024.3397332
摘要

Despite the success of deep learning methods in multi-modality segmentation tasks, they typically produce a deterministic output, neglecting the underlying uncertainty. The absence of uncertainty could lead to over-confident predictions with catastrophic consequences, particularly in safety-critical clinical applications. Recently, uncertainty estimation has attracted increasing attention, offering a measure of confidence associated with machine decisions. Nonetheless, existing uncertainty estimation approaches primarily focus on single-modality networks, leaving the uncertainty of multi-modality networks a largely under-explored domain. In this study, we present the first exploration of multi-modality uncertainties in the context of tumor segmentation on PET/CT. Concretely, we assessed four well-established uncertainty estimation approaches across various dimensions, including segmentation performance, uncertainty quality, comparison to single-modality uncertainties, and correlation to the contradictory information between modalities. Through qualitative and quantitative analyses, we gained valuable insights into what benefits multi-modality uncertainties derive, what information multi-modality uncertainties capture, and how multi-modality uncertainties correlate to information from single modalities. Drawing from these insights, we introduced a novel uncertainty-driven loss, which incentivized the network to effectively utilize the complementary information between modalities. The proposed approach outperformed the backbone network by 4.53 and 2.92 Dices in percentages on two PET/CT datasets while achieving lower uncertainties. This study not only advanced the comprehension of multi-modality uncertainties but also revealed the potential benefit of incorporating them into the segmentation network. The code is available at https://github.com/HUST-Tan/MMUE .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
damie完成签到 ,获得积分10
刚刚
KevinT完成签到,获得积分10
刚刚
SHAO应助wer采纳,获得10
刚刚
吕喜梅发布了新的文献求助10
刚刚
CCcc发布了新的文献求助10
1秒前
白白白完成签到,获得积分10
1秒前
hhhhh1完成签到,获得积分10
1秒前
羞涩的文轩完成签到,获得积分10
1秒前
大模型应助追寻听南采纳,获得10
2秒前
雨后初晨发布了新的文献求助10
2秒前
大胆听莲发布了新的文献求助10
2秒前
聪明小黄发布了新的文献求助10
2秒前
微笑驳发布了新的文献求助10
2秒前
Oil发布了新的文献求助10
3秒前
3秒前
丘比特应助炸鸡加热采纳,获得10
3秒前
顺利的雪莲完成签到 ,获得积分10
3秒前
nnn7完成签到,获得积分10
3秒前
Iridesent0v0完成签到,获得积分10
3秒前
倚栏听风完成签到 ,获得积分10
4秒前
4秒前
沉默的香氛完成签到 ,获得积分10
4秒前
小兰花完成签到,获得积分10
4秒前
miao发布了新的文献求助10
4秒前
5秒前
5秒前
乐乐应助快乐小子采纳,获得10
5秒前
该饮茶了完成签到,获得积分10
6秒前
AJ关注了科研通微信公众号
7秒前
7秒前
小白菜完成签到,获得积分10
7秒前
温暖访冬完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
懒羊羊发布了新的文献求助10
8秒前
PORCO完成签到,获得积分10
8秒前
rainbow完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006