摘要
No AccessSurvey PapersCurrent Status of Liquid-Bipropellant Detonation-Based Propulsion DevicesNathan D. Ballintyn, Alexis J. Harroun and Stephen D. HeisterNathan D. Ballintyn https://orcid.org/0000-0002-4611-9053Purdue University, West Lafayette, Indiana 47907, Alexis J. HarrounPurdue University, West Lafayette, Indiana 47907 and Stephen D. HeisterPurdue University, West Lafayette, Indiana 47907Published Online:1 May 2024https://doi.org/10.2514/1.B39360SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] "Web of Science," Clarivate, https://www.webofscience.com/wos/woscc/basic-search [retrieved 21 Feb. 2023]. Google Scholar[2] Lu F. K. and Braun E. M., "Rotating Detonation Wave Propulsion: Experimental Challenges, Modeling, and Engine Concepts," Journal of Propulsion and Power, Vol. 30, No. 5, 2014, pp. 1125–1142. https://doi.org/10.2514/1.B34802 LinkGoogle Scholar[3] Raman V., Prakash S. and Gamba M., "Nonidealities in Rotating Detonation Engines," Annual Review of Fluid Mechanics, Vol. 55, No. 1, 2023, pp. 639–674. https://doi.org/10.1146/annurev-fluid-120720-032612 CrossrefGoogle Scholar[4] Zhou R., Wu D. and Wang J., "Progress of Continuously Rotating Detonation Engines," Chinese Journal of Aeronautics, Vol. 29, No. 1, 2016, pp. 15–29. https://doi.org/10.1016/j.cja.2015.12.006 CrossrefGoogle Scholar[5] Roy G. D., Frolov S. M., Borisov A. A. and Netzer D. W., "Pulse Detonation Propulsion: Challenges, Current Status, and Future Perspective," Progress in Energy and Combustion Science, Vol. 30, No. 6, 2004, pp. 545–672. https://doi.org/10.1016/j.pecs.2004.05.001 CrossrefGoogle Scholar[6] Kan B. K., Heister S. D. and Paxson D. E., "Experimental Study of Pressure Gain Combustion with Hypergolic Rocket Propellants," Journal of Propulsion and Power, Vol. 33, No. 1, 2016, pp. 112–120. https://doi.org/10.2514/1.B36195 Google Scholar[7] McBride B. J. and Gordon S., "Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. Part 1: Analysis (No. NAS 1.61: 1311)," NASA Lewis Research Center, Cleveland, OH, 1994. Google Scholar[8] Fried L. E., "CHEETAH: A Fast Thermochemical Code for Detonation (No. UCRL-ID-115752)," Lawrence Livermore National Lab., Livermore, CA, 1993. Google Scholar[9] Lee E. L., Hornig H. C. and Kury J. W., "Adiabatic Expansion of High Explosive Detonation Products," Lawrence Livermore National Lab., Lawrence Radiation Lab., Univ. of California UCRL-50422, Livermore CA, May 1968. CrossrefGoogle Scholar[10] Harroun A. and Heister S. D., "Liquid Fuel Survey for Rotating Detonation Rocket Engines," AIAA SciTech 2022 Forum, AIAA Paper 2022-0088, 2022. https://doi.org/10.2514/6.2022-0088 LinkGoogle Scholar[11] Streng A. G. and Kirshenbaum A. D., "Explosive Systems Containing Liquid Oxygen. Liquid Oxygen-Liquid Methane Mixtures," Journal of Chemical & Engineering Data, Vol. 4, No. 2, 1959, pp. 127–131. https://doi.org/10.1021/je60002a006 CrossrefGoogle Scholar[12] Sutton A. and Sedano N., "Synopsis of LOX/Liquid Methane and Liquid Natural Gas Rocket Propellant Explosion Hazards," AIAA Propulsion and Energy 2019 Forum, AIAA Paper 2019-4283, 2019. https://doi.org/10.2514/6.2019-4283 LinkGoogle Scholar[13] Every R. L. and Thieme J. L., "Liquid Oxygen and Liquid Methane Mixtures as Rocket Monopropellants," Journal of Spacecraft and Rockets, Vol. 2, No. 5, 1965, pp. 787–789. https://doi.org/10.2514/3.28280 LinkGoogle Scholar[14] Dille K., Harroun A., Kubicki S. W., Heister S. D. and Austin B. L., "Development of Condensed Phase Detonation Performance Models for Rotating Detonation Rocket Engines," AIAA SciTech 2021 Forum, AIAA Paper 2021-1028, 2021. https://doi.org/10.2514/6.2021-1028 LinkGoogle Scholar[15] Lemmon E. W., Bell I. H., Huber M. L. and McLinden M. O., NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, National Inst. of Standards and Technology, Standard Reference Data Program, Gaithersburg, MD, 2018. Google Scholar[16] Anderson W. S., Heister S. D., Kan B. and Hartsfield C., "Experimental Study of a Hypergolically Ignited Liquid Bipropellant Rotating Detonation Rocket Engine," Journal of Propulsion and Power, Vol. 36, No. 6, 2020, pp. 851–861. https://doi.org/10.2514/1.B37666 LinkGoogle Scholar[17] Zeldovich Y. B., "To the Question of Energy Use of Detonation Combustion," Journal of Propulsion and Power, Vol. 22, No. 3, 2006, pp. 588–592. https://doi.org/10.2514/1.22705 LinkGoogle Scholar[18] Voitsekhovskii B. V., "Stationary Detonation," Doklady Akademii Nauk USSR, Vol. 129, No. 6, 1959, pp. 1254–1256. Google Scholar[19] Voitsekhovskii B. V., "Stationary Spin Detonation," Soviet Journal of Applied Mechanics and Technical Physics, Vol. 3, No. 6, 1960, pp. 157–164. Google Scholar[20] Nicholls J. A. and Cullen R. E., "The Feasibility of a Rotating Detonation Wave Rocket Motor," Air Force Flight Test Center RPL-TDR-64-113, Edwards AFB, CA, April 1964. Google Scholar[21] Nicholls J. A., Cullen R. E. and Ragland K. W., "Feasibility Studies of a Rotating Detonation Wave Rocket Motor," Journal of Spacecraft and Rockets, Vol. 3, No. 6, 1966, pp. 893–898. https://doi.org/10.2514/3.28557 LinkGoogle Scholar[22] Clayton R. M., Rogero R. S. and Sotter J. G., "An Experimental Description of Destructive Liquid Rocket Resonant Combustion," AIAA Journal, Vol. 6, No. 7, 1968, pp. 1252–1259. https://doi.org/10.2514/3.4730 LinkGoogle Scholar[23] Clayton R. M. and Rogero R. S., "Experimental Measurements on a Rotating Detonation-Like Wave Observed During Liquid Rocket Resonant Combustion," Jet Propulsion Lab., California Inst. of Technology TR 32–788, Pasadena, CA, Aug. 1965. Google Scholar[24] Oefelein J. C. and Yang V., "Comprehensive Review of Liquid-Propellant Combustion Instabilities in F-1 Engines," Journal of Propulsion and Power, Vol. 9, No. 5, 1993, pp. 657–677. https://doi.org/10.2514/3.23674 LinkGoogle Scholar[25] Bykovskii F. A., Zhdan S. A. and Vedernikov E. F., "Continuous Spin Detonations," Journal of Propulsion and Power, Vol. 22, No. 6, 2006, pp. 1204–1216. https://doi.org/10.2514/1.17656 LinkGoogle Scholar[26] "Dr. Robert H. Goddard, American Rocketry Pioneer," NASA, 2017, https://www.nasa.gov/centers/goddard/about/history/dr_goddard.html [retrieved 8 March 2017]. Google Scholar[27] Goddard E. C., "File:Goddard and Rocket.Jpg," 1926, https://commons.wikimedia.org/wiki/File:Goddard_and_Rocket.jpg. Google Scholar[28] "Early Rockets," NASA Image and Video Library, https://images.nasa.gov/details/9138034 [retrieved 6 March 2017]. Google Scholar[29] Tsiolkovsky K., "Exploration of World Spaces by Jet Devices," 1903, https://web.archive.org/web/20110815183920/http://epizodsspace.airbase.ru/bibl/dorev-knigi/ciolkovskiy/sm.rar. Google Scholar[30] Kan B., "Experimental Study on an Unsteady Pressure Gain Combustion Hypergolic Rocket Engine Concept," Ph.D. Dissertation, Purdue Univ., West Lafayette, IN, 2017. Google Scholar[31] Xue S., Liu H., Zhou L., Yang W., Hu H. and Yan Y., "Experimental Research on Rotating Detonation with Liquid Hypergolic Propellants," Chinese Journal of Aeronautics, Vol. 31, No. 12, 2018, pp. 2199–2205. https://doi.org/10.1016/j.cja.2018.08.022 CrossrefGoogle Scholar[32] Kubicki S. W., Anderson W. and Heister S. D., "Further Experimental Study of a Hypergolically-Ignited Liquid-Liquid Rotating Detonation Rocket Engine," AIAA SciTech Forum, AIAA Paper 2020-0196, 2020. https://doi.org/10.2514/6.2020-0196 Google Scholar[33] Nair A. P., Keller A. R., Morrow D. S., Lima A. B., Mitchell Spearrin R. and Pineda D. I., "Hypergolic Continuous Detonation with Space-Storable Propellants and Additively Manufactured Injector Design," Journal of Spacecraft and Rockets, Vol. 59, No. 4, 2022, pp. 1332–1341. https://doi.org/10.2514/1.A35272 LinkGoogle Scholar[34] Teasley T. W., Fedotowsky T. M., Gradl P. R., Austin B. L. and Heister S. D., "Current State of NASA Continuously Rotating Detonation Cycle Engine Development," AIAA SciTech 2023 Forum, AIAA Paper 2023-1873, 2023. https://doi.org/10.2514/6.2023-1873 LinkGoogle Scholar[35] Yan Y., Wang Z., Yang B., Hu H. and Hong L., "Experimental Research on the Detonation Behavior in Annular Combustors Utilizing Liquid Hypergolic Propellants," Acta Astronautica, Vol. 211, Oct. 2023, pp. 865–876. https://doi.org/10.1016/j.actaastro.2023.07.011 CrossrefGoogle Scholar[36] Xue S., Yang W., Zhou L. and Liu H., "Experimental Investigation of Self-Excited Combustion Instabilities in a Small Earth Storable Bipropellant Rocket Combustor," Aerospace Science and Technology, Vol. 105, Oct. 2020, Paper 106008. https://doi.org/10.1016/j.ast.2020.106008 CrossrefGoogle Scholar[37] Nair A. P., Keller A. R., Morrow D. S., Lima A. B., Mitchell Spearrin R. and Pineda D. I., "Correction: Hypergolic Continuous Detonation with Space-Storable Propellants and Additively-Manufactured Injector Design," Journal of Spacecraft and Rockets, Vol. 60, No. 3, 2023, p. 1. https://doi.org/10.2514/1.A35272.c1 LinkGoogle Scholar[38] Keller A. R., Nair A. P., Kuenning N., Minesi N. and Spearrin R. M., "Annular Chamber Geometry Effects on a Hypergolic Liquid Rotating Detonation Rocket Engine," AIAA Aviation 2023 Forum, AIAA Paper 2023-4385, 2023. https://doi.org/10.2514/6.2023-4385 LinkGoogle Scholar[39] Lim D., Heister S. D., Humble J. and Harroun A. J., "Experimental Investigation of Wall Heat Flux in a Rotating Detonation Rocket Engine," Journal of Spacecraft and Rockets, Vol. 58, No. 5, 2021, pp. 1444–1452. https://doi.org/10.2514/1.A34840 LinkGoogle Scholar[40] Grosse A. V., Kirshenbaum A. D. and Streng A. G., "Detonation of Liquid Oxygen-Liquid Methane Solutions," Journal of the American Chemical Society, Vol. 79, No. 23, 1957, pp. 6341–6342. https://doi.org/10.1021/ja01580a062 Google Scholar[41] Robinson J. W., "Liquid Oxygen/Liquid Methane Component Technology Development at MSFC," ESA-3AF Space Propulsion 2010, May 2010. Google Scholar[42] Anderson W., Dambach E. M., Solomon Y., Mahakali R. and Yan A., "Reduced Toxicity Hypergolic Propellants," US Patent 2012/0273099 A1, Sept. 2012. Google Scholar[43] Stechmann D. P., "Experimental Study of High-Pressure Rotating Detonation Combustion in Rocket Environments," Ph.D. Dissertation, Purdue Univ., West Lafayette, IN, 2017. Google Scholar[44] Walters I. V., Lemcherfi A., Gejji R. M., Heister S. D. and Slabaugh C. D., "Performance Characterization of a Natural Gas–Air Rotating Detonation Engine," Journal of Propulsion and Power, Vol. 37, No. 2, 2021, pp. 292–304. https://doi.org/10.2514/1.B38087 LinkGoogle Scholar[45] Heister S. D., Anderson W. E., Pourpoint T. L. and Cassady R. J., "Chapter 12, Combustion Instability," Rocket Propulsion, Vol. 47, Cambridge Univ. Press, New York, 2019, Chap. 12. Google Scholar[46] Shimo M. and Heister S. D., "Multicyclic-Detonation-Initiation Studies in Valveless Pulsed Detonation Combustors," Journal of Propulsion and Power, Vol. 24, No. 2, 2008, pp. 336–344. https://doi.org/10.2514/1.29546 LinkGoogle Scholar[47] Bussing T. and Pappas G., "Pulse Detonation Engine Theory and Concepts (A 97-15029 02-07)," Developments in High-Speed Vehicle Propulsion Systems, Vol. 165, AIAA, Reston, VA, 1996, pp. 421–472. Google Scholar[48] Austin B. L., Heister S. D. and Anderson W. E., "Characterization of Pintle Engine Performance for Nontoxic Hypergolic Bipropellants," Journal of Propulsion and Power, Vol. 21, No. 4, 2005, pp. 627–635. https://doi.org/10.2514/1.7988 LinkGoogle Scholar[49] Sheffield S. A., Dattlebaum D. M., Stahl D. B., Gibson L. L., Bartram B. D. and Engelke R., "Shock Initiation and Detonation Study on High Concentration H2O2/H2O Solutions Using In-Situ Magnetic Gauging," Proceedings—14th International Detonation Symposium, IDS 2010, Vol. 836, Office of Scientific and Technical Information (OSTI), 2010, pp. 601–610. Google Scholar[50] Kerstens F., Cervone A. and Gradl P., "End to End Process Evaluation for Additively Manufactured Liquid Rocket Engine Thrust Chambers," Acta Astronautica, Vol. 182, May 2021, pp. 454–465. https://doi.org/10.1016/j.actaastro.2021.02.034 CrossrefGoogle Scholar[51] Teasley T. W., Gradl P. R., Garcia M. B., Williams B. B. and Protz C. S., "Extreme Environment Hot Fire Durability of Post Processed Additively Manufactured GRCop-Alloy Combustion Chambers," AIAA Propulsion and Energy 2021 Forum, AIAA Paper 2021-3233, 2021. https://doi.org/10.2514/6.2021-3233 LinkGoogle Scholar[52] Gradl P. R., Teasley T. W., Protz C. S., Katsarelis C. and Chen P., "Process Development and Hot-Fire Testing of Additively Manufactured NASA HR-1 for Liquid Rocket Engine Applications," AIAA Propulsion and Energy 2021 Forum, AIAA Paper 2021-3236, 2021. https://doi.org/10.2514/6.2021-3236 LinkGoogle Scholar[53] Gradl P. R., Teasley T. W., Protz C. S., Garcia M. B., Ellis D. and Kantzos C., "Advancing GRCop-Based Bimetallic Additive Manufacturing to Optimize Component Design and Applications for Liquid Rocket Engines," AIAA Propulsion and Energy 2021 Forum, AIAA Paper 2021-3231, 2021. https://doi.org/10.2514/6.2021-3231 LinkGoogle Scholar[54] Gradl P. R., Tinker D. C., Ivester J., Skinner S. W., Teasley T. and Bili J. L., "Geometric Feature Reproducibility for Laser Powder Bed Fusion (L-PBF) Additive Manufacturing with Inconel 718," Additive Manufacturing, Vol. 47, Nov. 2021, Paper 102305. https://doi.org/10.1016/j.addma.2021.102305 Google Scholar[55] Morrow J., "Cyclic Plastic Strain Energy and Fatigue of Metals," Internal Friction, Damping, and Cyclic Plasticity Symposium, American Soc. for Testing and Materials, 1964, Paper STP43764S. https://doi.org/10.1520/STP43764S Google Scholar[56] Wiesner C. S. and MacGillivray H., "Loading Rate Effects on Tensile Properties and Fracture Toughness of Steel," Fracture, Plastic Flow and Structural Integrity in the Nuclear Industry, CRC Press, Boca Raton, FL, 2000, pp. 149–174. Google Scholar Previous article Next article FiguresReferencesRelatedDetails What's Popular Articles in Advance Metrics CrossmarkInformationCopyright © 2024 by Nathan D. Ballintyn, Alexis J. Harroun, and Stephen D. Heister. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3876 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAircraft EnginesCombustionCombustion ChambersCombustorsEnergyEnergy FormsEnergy Forms, Production and ConversionEnergy ProductionFossil FuelsNon-Renewable EnergyNozzlesPetroleumPropellantPropulsion and PowerRocket PropellantRocketry KeywordsCryogenic PropellantsAdiabatic Flame TemperaturePropulsion and PowerRotating Detonation EngineRotating Detonation Rocket EngineNon Hypergolic PropellantsContoured Plug NozzleInjection CombustorDetonation WavesPetroleumAcknowledgmentsThe authors acknowledge the support of INSpace LLC with hardware development suggestions and with the use of their torch igniters in Purdue experiments. The authors acknowledge the support of NASA through NASA Space Technology Graduate Research Opportunity fellowship (award number 80NSSC2XK1181) for Mr. Ballintyn and Department of Defense for the National Defense Science and Engineering Graduate fellowship (award number NDSEG F-4639407097) of Dr. Harroun.Digital Received15 August 2023Accepted26 February 2024Published online1 May 2024