清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Current Status of Liquid-Bipropellant Detonation-Based Propulsion Devices

起爆 推进 材料科学 电流(流体) 航空航天工程 单组元推进剂 液氧 推进剂 核工程 石油工程 汽车工程 工程类 爆炸物 化学 有机化学 电气工程 氧气
作者
Nathan Ballintyn,Alexis Harroun,Stephen D. Heister
出处
期刊:Journal of Propulsion and Power [American Institute of Aeronautics and Astronautics]
卷期号:: 1-19
标识
DOI:10.2514/1.b39360
摘要

No AccessSurvey PapersCurrent Status of Liquid-Bipropellant Detonation-Based Propulsion DevicesNathan D. Ballintyn, Alexis J. Harroun and Stephen D. HeisterNathan D. Ballintyn https://orcid.org/0000-0002-4611-9053Purdue University, West Lafayette, Indiana 47907, Alexis J. HarrounPurdue University, West Lafayette, Indiana 47907 and Stephen D. HeisterPurdue University, West Lafayette, Indiana 47907Published Online:1 May 2024https://doi.org/10.2514/1.B39360SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] "Web of Science," Clarivate, https://www.webofscience.com/wos/woscc/basic-search [retrieved 21 Feb. 2023]. Google Scholar[2] Lu F. K. and Braun E. M., "Rotating Detonation Wave Propulsion: Experimental Challenges, Modeling, and Engine Concepts," Journal of Propulsion and Power, Vol. 30, No. 5, 2014, pp. 1125–1142. https://doi.org/10.2514/1.B34802 LinkGoogle Scholar[3] Raman V., Prakash S. and Gamba M., "Nonidealities in Rotating Detonation Engines," Annual Review of Fluid Mechanics, Vol. 55, No. 1, 2023, pp. 639–674. https://doi.org/10.1146/annurev-fluid-120720-032612 CrossrefGoogle Scholar[4] Zhou R., Wu D. and Wang J., "Progress of Continuously Rotating Detonation Engines," Chinese Journal of Aeronautics, Vol. 29, No. 1, 2016, pp. 15–29. https://doi.org/10.1016/j.cja.2015.12.006 CrossrefGoogle Scholar[5] Roy G. D., Frolov S. M., Borisov A. A. and Netzer D. W., "Pulse Detonation Propulsion: Challenges, Current Status, and Future Perspective," Progress in Energy and Combustion Science, Vol. 30, No. 6, 2004, pp. 545–672. https://doi.org/10.1016/j.pecs.2004.05.001 CrossrefGoogle Scholar[6] Kan B. K., Heister S. D. and Paxson D. E., "Experimental Study of Pressure Gain Combustion with Hypergolic Rocket Propellants," Journal of Propulsion and Power, Vol. 33, No. 1, 2016, pp. 112–120. https://doi.org/10.2514/1.B36195 Google Scholar[7] McBride B. J. and Gordon S., "Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. Part 1: Analysis (No. NAS 1.61: 1311)," NASA Lewis Research Center, Cleveland, OH, 1994. Google Scholar[8] Fried L. E., "CHEETAH: A Fast Thermochemical Code for Detonation (No. UCRL-ID-115752)," Lawrence Livermore National Lab., Livermore, CA, 1993. Google Scholar[9] Lee E. L., Hornig H. C. and Kury J. W., "Adiabatic Expansion of High Explosive Detonation Products," Lawrence Livermore National Lab., Lawrence Radiation Lab., Univ. of California UCRL-50422, Livermore CA, May 1968. CrossrefGoogle Scholar[10] Harroun A. and Heister S. D., "Liquid Fuel Survey for Rotating Detonation Rocket Engines," AIAA SciTech 2022 Forum, AIAA Paper 2022-0088, 2022. https://doi.org/10.2514/6.2022-0088 LinkGoogle Scholar[11] Streng A. G. and Kirshenbaum A. D., "Explosive Systems Containing Liquid Oxygen. Liquid Oxygen-Liquid Methane Mixtures," Journal of Chemical & Engineering Data, Vol. 4, No. 2, 1959, pp. 127–131. https://doi.org/10.1021/je60002a006 CrossrefGoogle Scholar[12] Sutton A. and Sedano N., "Synopsis of LOX/Liquid Methane and Liquid Natural Gas Rocket Propellant Explosion Hazards," AIAA Propulsion and Energy 2019 Forum, AIAA Paper 2019-4283, 2019. https://doi.org/10.2514/6.2019-4283 LinkGoogle Scholar[13] Every R. L. and Thieme J. L., "Liquid Oxygen and Liquid Methane Mixtures as Rocket Monopropellants," Journal of Spacecraft and Rockets, Vol. 2, No. 5, 1965, pp. 787–789. https://doi.org/10.2514/3.28280 LinkGoogle Scholar[14] Dille K., Harroun A., Kubicki S. W., Heister S. D. and Austin B. L., "Development of Condensed Phase Detonation Performance Models for Rotating Detonation Rocket Engines," AIAA SciTech 2021 Forum, AIAA Paper 2021-1028, 2021. https://doi.org/10.2514/6.2021-1028 LinkGoogle Scholar[15] Lemmon E. W., Bell I. H., Huber M. L. and McLinden M. O., NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, National Inst. of Standards and Technology, Standard Reference Data Program, Gaithersburg, MD, 2018. Google Scholar[16] Anderson W. S., Heister S. D., Kan B. and Hartsfield C., "Experimental Study of a Hypergolically Ignited Liquid Bipropellant Rotating Detonation Rocket Engine," Journal of Propulsion and Power, Vol. 36, No. 6, 2020, pp. 851–861. https://doi.org/10.2514/1.B37666 LinkGoogle Scholar[17] Zeldovich Y. B., "To the Question of Energy Use of Detonation Combustion," Journal of Propulsion and Power, Vol. 22, No. 3, 2006, pp. 588–592. https://doi.org/10.2514/1.22705 LinkGoogle Scholar[18] Voitsekhovskii B. V., "Stationary Detonation," Doklady Akademii Nauk USSR, Vol. 129, No. 6, 1959, pp. 1254–1256. Google Scholar[19] Voitsekhovskii B. V., "Stationary Spin Detonation," Soviet Journal of Applied Mechanics and Technical Physics, Vol. 3, No. 6, 1960, pp. 157–164. Google Scholar[20] Nicholls J. A. and Cullen R. E., "The Feasibility of a Rotating Detonation Wave Rocket Motor," Air Force Flight Test Center RPL-TDR-64-113, Edwards AFB, CA, April 1964. Google Scholar[21] Nicholls J. A., Cullen R. E. and Ragland K. W., "Feasibility Studies of a Rotating Detonation Wave Rocket Motor," Journal of Spacecraft and Rockets, Vol. 3, No. 6, 1966, pp. 893–898. https://doi.org/10.2514/3.28557 LinkGoogle Scholar[22] Clayton R. M., Rogero R. S. and Sotter J. G., "An Experimental Description of Destructive Liquid Rocket Resonant Combustion," AIAA Journal, Vol. 6, No. 7, 1968, pp. 1252–1259. https://doi.org/10.2514/3.4730 LinkGoogle Scholar[23] Clayton R. M. and Rogero R. S., "Experimental Measurements on a Rotating Detonation-Like Wave Observed During Liquid Rocket Resonant Combustion," Jet Propulsion Lab., California Inst. of Technology TR 32–788, Pasadena, CA, Aug. 1965. Google Scholar[24] Oefelein J. C. and Yang V., "Comprehensive Review of Liquid-Propellant Combustion Instabilities in F-1 Engines," Journal of Propulsion and Power, Vol. 9, No. 5, 1993, pp. 657–677. https://doi.org/10.2514/3.23674 LinkGoogle Scholar[25] Bykovskii F. A., Zhdan S. A. and Vedernikov E. F., "Continuous Spin Detonations," Journal of Propulsion and Power, Vol. 22, No. 6, 2006, pp. 1204–1216. https://doi.org/10.2514/1.17656 LinkGoogle Scholar[26] "Dr. Robert H. Goddard, American Rocketry Pioneer," NASA, 2017, https://www.nasa.gov/centers/goddard/about/history/dr_goddard.html [retrieved 8 March 2017]. Google Scholar[27] Goddard E. C., "File:Goddard and Rocket.Jpg," 1926, https://commons.wikimedia.org/wiki/File:Goddard_and_Rocket.jpg. Google Scholar[28] "Early Rockets," NASA Image and Video Library, https://images.nasa.gov/details/9138034 [retrieved 6 March 2017]. Google Scholar[29] Tsiolkovsky K., "Exploration of World Spaces by Jet Devices," 1903, https://web.archive.org/web/20110815183920/http://epizodsspace.airbase.ru/bibl/dorev-knigi/ciolkovskiy/sm.rar. Google Scholar[30] Kan B., "Experimental Study on an Unsteady Pressure Gain Combustion Hypergolic Rocket Engine Concept," Ph.D. Dissertation, Purdue Univ., West Lafayette, IN, 2017. Google Scholar[31] Xue S., Liu H., Zhou L., Yang W., Hu H. and Yan Y., "Experimental Research on Rotating Detonation with Liquid Hypergolic Propellants," Chinese Journal of Aeronautics, Vol. 31, No. 12, 2018, pp. 2199–2205. https://doi.org/10.1016/j.cja.2018.08.022 CrossrefGoogle Scholar[32] Kubicki S. W., Anderson W. and Heister S. D., "Further Experimental Study of a Hypergolically-Ignited Liquid-Liquid Rotating Detonation Rocket Engine," AIAA SciTech Forum, AIAA Paper 2020-0196, 2020. https://doi.org/10.2514/6.2020-0196 Google Scholar[33] Nair A. P., Keller A. R., Morrow D. S., Lima A. B., Mitchell Spearrin R. and Pineda D. I., "Hypergolic Continuous Detonation with Space-Storable Propellants and Additively Manufactured Injector Design," Journal of Spacecraft and Rockets, Vol. 59, No. 4, 2022, pp. 1332–1341. https://doi.org/10.2514/1.A35272 LinkGoogle Scholar[34] Teasley T. W., Fedotowsky T. M., Gradl P. R., Austin B. L. and Heister S. D., "Current State of NASA Continuously Rotating Detonation Cycle Engine Development," AIAA SciTech 2023 Forum, AIAA Paper 2023-1873, 2023. https://doi.org/10.2514/6.2023-1873 LinkGoogle Scholar[35] Yan Y., Wang Z., Yang B., Hu H. and Hong L., "Experimental Research on the Detonation Behavior in Annular Combustors Utilizing Liquid Hypergolic Propellants," Acta Astronautica, Vol. 211, Oct. 2023, pp. 865–876. https://doi.org/10.1016/j.actaastro.2023.07.011 CrossrefGoogle Scholar[36] Xue S., Yang W., Zhou L. and Liu H., "Experimental Investigation of Self-Excited Combustion Instabilities in a Small Earth Storable Bipropellant Rocket Combustor," Aerospace Science and Technology, Vol. 105, Oct. 2020, Paper 106008. https://doi.org/10.1016/j.ast.2020.106008 CrossrefGoogle Scholar[37] Nair A. P., Keller A. R., Morrow D. S., Lima A. B., Mitchell Spearrin R. and Pineda D. I., "Correction: Hypergolic Continuous Detonation with Space-Storable Propellants and Additively-Manufactured Injector Design," Journal of Spacecraft and Rockets, Vol. 60, No. 3, 2023, p. 1. https://doi.org/10.2514/1.A35272.c1 LinkGoogle Scholar[38] Keller A. R., Nair A. P., Kuenning N., Minesi N. and Spearrin R. M., "Annular Chamber Geometry Effects on a Hypergolic Liquid Rotating Detonation Rocket Engine," AIAA Aviation 2023 Forum, AIAA Paper 2023-4385, 2023. https://doi.org/10.2514/6.2023-4385 LinkGoogle Scholar[39] Lim D., Heister S. D., Humble J. and Harroun A. J., "Experimental Investigation of Wall Heat Flux in a Rotating Detonation Rocket Engine," Journal of Spacecraft and Rockets, Vol. 58, No. 5, 2021, pp. 1444–1452. https://doi.org/10.2514/1.A34840 LinkGoogle Scholar[40] Grosse A. V., Kirshenbaum A. D. and Streng A. G., "Detonation of Liquid Oxygen-Liquid Methane Solutions," Journal of the American Chemical Society, Vol. 79, No. 23, 1957, pp. 6341–6342. https://doi.org/10.1021/ja01580a062 Google Scholar[41] Robinson J. W., "Liquid Oxygen/Liquid Methane Component Technology Development at MSFC," ESA-3AF Space Propulsion 2010, May 2010. Google Scholar[42] Anderson W., Dambach E. M., Solomon Y., Mahakali R. and Yan A., "Reduced Toxicity Hypergolic Propellants," US Patent 2012/0273099 A1, Sept. 2012. Google Scholar[43] Stechmann D. P., "Experimental Study of High-Pressure Rotating Detonation Combustion in Rocket Environments," Ph.D. Dissertation, Purdue Univ., West Lafayette, IN, 2017. Google Scholar[44] Walters I. V., Lemcherfi A., Gejji R. M., Heister S. D. and Slabaugh C. D., "Performance Characterization of a Natural Gas–Air Rotating Detonation Engine," Journal of Propulsion and Power, Vol. 37, No. 2, 2021, pp. 292–304. https://doi.org/10.2514/1.B38087 LinkGoogle Scholar[45] Heister S. D., Anderson W. E., Pourpoint T. L. and Cassady R. J., "Chapter 12, Combustion Instability," Rocket Propulsion, Vol. 47, Cambridge Univ. Press, New York, 2019, Chap. 12. Google Scholar[46] Shimo M. and Heister S. D., "Multicyclic-Detonation-Initiation Studies in Valveless Pulsed Detonation Combustors," Journal of Propulsion and Power, Vol. 24, No. 2, 2008, pp. 336–344. https://doi.org/10.2514/1.29546 LinkGoogle Scholar[47] Bussing T. and Pappas G., "Pulse Detonation Engine Theory and Concepts (A 97-15029 02-07)," Developments in High-Speed Vehicle Propulsion Systems, Vol. 165, AIAA, Reston, VA, 1996, pp. 421–472. Google Scholar[48] Austin B. L., Heister S. D. and Anderson W. E., "Characterization of Pintle Engine Performance for Nontoxic Hypergolic Bipropellants," Journal of Propulsion and Power, Vol. 21, No. 4, 2005, pp. 627–635. https://doi.org/10.2514/1.7988 LinkGoogle Scholar[49] Sheffield S. A., Dattlebaum D. M., Stahl D. B., Gibson L. L., Bartram B. D. and Engelke R., "Shock Initiation and Detonation Study on High Concentration H2O2/H2O Solutions Using In-Situ Magnetic Gauging," Proceedings—14th International Detonation Symposium, IDS 2010, Vol. 836, Office of Scientific and Technical Information (OSTI), 2010, pp. 601–610. Google Scholar[50] Kerstens F., Cervone A. and Gradl P., "End to End Process Evaluation for Additively Manufactured Liquid Rocket Engine Thrust Chambers," Acta Astronautica, Vol. 182, May 2021, pp. 454–465. https://doi.org/10.1016/j.actaastro.2021.02.034 CrossrefGoogle Scholar[51] Teasley T. W., Gradl P. R., Garcia M. B., Williams B. B. and Protz C. S., "Extreme Environment Hot Fire Durability of Post Processed Additively Manufactured GRCop-Alloy Combustion Chambers," AIAA Propulsion and Energy 2021 Forum, AIAA Paper 2021-3233, 2021. https://doi.org/10.2514/6.2021-3233 LinkGoogle Scholar[52] Gradl P. R., Teasley T. W., Protz C. S., Katsarelis C. and Chen P., "Process Development and Hot-Fire Testing of Additively Manufactured NASA HR-1 for Liquid Rocket Engine Applications," AIAA Propulsion and Energy 2021 Forum, AIAA Paper 2021-3236, 2021. https://doi.org/10.2514/6.2021-3236 LinkGoogle Scholar[53] Gradl P. R., Teasley T. W., Protz C. S., Garcia M. B., Ellis D. and Kantzos C., "Advancing GRCop-Based Bimetallic Additive Manufacturing to Optimize Component Design and Applications for Liquid Rocket Engines," AIAA Propulsion and Energy 2021 Forum, AIAA Paper 2021-3231, 2021. https://doi.org/10.2514/6.2021-3231 LinkGoogle Scholar[54] Gradl P. R., Tinker D. C., Ivester J., Skinner S. W., Teasley T. and Bili J. L., "Geometric Feature Reproducibility for Laser Powder Bed Fusion (L-PBF) Additive Manufacturing with Inconel 718," Additive Manufacturing, Vol. 47, Nov. 2021, Paper 102305. https://doi.org/10.1016/j.addma.2021.102305 Google Scholar[55] Morrow J., "Cyclic Plastic Strain Energy and Fatigue of Metals," Internal Friction, Damping, and Cyclic Plasticity Symposium, American Soc. for Testing and Materials, 1964, Paper STP43764S. https://doi.org/10.1520/STP43764S Google Scholar[56] Wiesner C. S. and MacGillivray H., "Loading Rate Effects on Tensile Properties and Fracture Toughness of Steel," Fracture, Plastic Flow and Structural Integrity in the Nuclear Industry, CRC Press, Boca Raton, FL, 2000, pp. 149–174. Google Scholar Previous article Next article FiguresReferencesRelatedDetails What's Popular Articles in Advance Metrics CrossmarkInformationCopyright © 2024 by Nathan D. Ballintyn, Alexis J. Harroun, and Stephen D. Heister. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3876 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAircraft EnginesCombustionCombustion ChambersCombustorsEnergyEnergy FormsEnergy Forms, Production and ConversionEnergy ProductionFossil FuelsNon-Renewable EnergyNozzlesPetroleumPropellantPropulsion and PowerRocket PropellantRocketry KeywordsCryogenic PropellantsAdiabatic Flame TemperaturePropulsion and PowerRotating Detonation EngineRotating Detonation Rocket EngineNon Hypergolic PropellantsContoured Plug NozzleInjection CombustorDetonation WavesPetroleumAcknowledgmentsThe authors acknowledge the support of INSpace LLC with hardware development suggestions and with the use of their torch igniters in Purdue experiments. The authors acknowledge the support of NASA through NASA Space Technology Graduate Research Opportunity fellowship (award number 80NSSC2XK1181) for Mr. Ballintyn and Department of Defense for the National Defense Science and Engineering Graduate fellowship (award number NDSEG F-4639407097) of Dr. Harroun.Digital Received15 August 2023Accepted26 February 2024Published online1 May 2024
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辻诺完成签到 ,获得积分10
2秒前
LeoBigman完成签到 ,获得积分10
14秒前
17秒前
Eric800824完成签到 ,获得积分10
20秒前
科研孙完成签到,获得积分10
25秒前
一一完成签到 ,获得积分10
27秒前
36秒前
小学徒完成签到 ,获得积分20
38秒前
Kelly完成签到 ,获得积分10
52秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
淡淡醉波wuliao完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
加贝完成签到 ,获得积分10
1分钟前
1分钟前
nav完成签到 ,获得积分10
1分钟前
薛言发布了新的文献求助10
1分钟前
Alex-Song完成签到 ,获得积分0
2分钟前
2分钟前
Hello应助薛言采纳,获得10
2分钟前
dreamwalk完成签到 ,获得积分10
2分钟前
番茄小超人2号完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
huiluowork完成签到 ,获得积分10
2分钟前
wjx完成签到 ,获得积分10
2分钟前
kuyi完成签到 ,获得积分10
2分钟前
天下无马完成签到 ,获得积分10
3分钟前
午后狂睡完成签到 ,获得积分10
3分钟前
咯咯咯完成签到 ,获得积分10
3分钟前
3分钟前
噼里啪啦发布了新的文献求助50
3分钟前
柯伊达完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
年轻千愁完成签到 ,获得积分10
3分钟前
simon完成签到,获得积分10
3分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015476
求助须知:如何正确求助?哪些是违规求助? 3555403
关于积分的说明 11318034
捐赠科研通 3288651
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812012