拜瑞妥
药代动力学
医学
Abcg2型
多态性(计算机科学)
药理学
内科学
胃肠病学
运输机
基因型
生物
遗传学
ATP结合盒运输机
心房颤动
华法林
基因
作者
Alessandra Ferreira dos Santos,Quevellin Alves dos Santos Francisco,Juliana Barbosa Nunes,Fábio Antônio Colombo,Vanessa Bergamin Boralli
标识
DOI:10.1590/1414-431x2024e13257
摘要
Rivaroxaban is a direct factor Xa inhibitor. Its interindividual variability is large and may be connected to the occurrence of adverse drug reactions or drug inefficacy. Pharmacogenetics studies concentrating on the reasons underlying rivaroxaban's inadequate response could help explain the differences in treatment results and medication safety profiles. Against this background, this study evaluated whether polymorphisms in the gene encoding the ABCG2 transporter modify the pharmacokinetic characteristics of rivaroxaban. A total of 117 healthy volunteers participated in two bioequivalence experiments with a single oral dose of 20 mg rivaroxaban, with one group fasting and the other being fed. Ultra-high-performance liquid chromatography coupled with mass spectrometry was employed to determine the plasma concentrations of rivaroxaban, and the WinNonlin program was used to calculate the pharmacokinetics parameters. In the fasting group, the rivaroxaban pharmacokinetic parameters of Vd (508.27 vs 334.45 vs 275.59 L) and t1/2 (41.04 vs 16.43 vs 15.47 h) were significantly higher in ABCG2 421 A/A genotype carriers than in ABCG2 421 C/C and 421 C/A genotype carriers (P<0.05). The mean values of Cmax (145.81 vs 176.27 vs 190.19 ng/mL), AUC0-t (1193.81 vs 1374.69 vs 1570.77 ng/mL·h), and Cl (11.82 vs 14.50 vs 13.01 mL/h) for these groups were lower, but this difference was not statistically significant (P>0.05). These findings suggested that the ABCG2 421 A/A genotype may impact rivaroxaban parameters after a single dose in healthy subjects. This finding must be validated before it is applied in clinical practice.
科研通智能强力驱动
Strongly Powered by AbleSci AI