Deep reinforcement learning-based pitch attitude control of a beaver-like underwater robot

强化学习 水下 钢筋 心理学 控制(管理) 机器人 海狸 人工智能 计算机科学 地理 地质学 社会心理学 考古 古生物学
作者
Gang Chen,Zhi-Han Zhao,Yuwang Lu,Chenguang Yang,Huosheng Hu
出处
期刊:Ocean Engineering [Elsevier]
卷期号:307: 118163-118163 被引量:1
标识
DOI:10.1016/j.oceaneng.2024.118163
摘要

The foot paddling of an underwater robot causes continuous changes of the water flow field, which results in the unbalanced hydrodynamic force to change the robot's posture continuously. As the water environment and robot swimming are nonlinear and strongly coupled systems, it is difficult to establish an accurate model. This paper presents an underwater robot, which adopts the synchronous and alternate swimming trajectory of a beaver. Its pitch stability control model is established by using deep reinforcement learning algorithm and its self-learning control system is constructed for stable control of pitch attitude. Experiments are conducted to show that the pitch attitude of the beaver-like underwater robot can be stabilized while maintaining a certain swimming speed. The control method does not need to establish a complex and high-order model of webbed paddling hydrodynamics, which provides a new idea for stable swimming control of underwater robots. This work aims to find an excellent control method for underwater bionic robots. The ocean has the richest natural resources and the most diverse species on Earth. The underwater environment is complex and variable, imposing higher demands on the performance of underwater robots. Increasingly, new concept marine equipment is being researched for scientific exploration, and among these, underwater robots designed based on bionic principles are a growing trend. Currently, most underwater robots still use propellers as their propulsion system. Propellers have advantages such as simple control, high mechanical efficiency, and powerful propulsion, but they also have drawbacks including severe water flow disturbance during operation, high noise, poor concealment, and limited adaptability in complex water environments. Finding a propulsion system with better overall performance is a crucial way to enhance the motion capabilities of underwater robots. Underwater robots often have complex structures, and there are numerous factors influencing their movement in the underwater environment, making fluid dynamics modeling and optimization challenging. Reinforcement learning, as an optimization algorithm, can circumvent the aforementioned difficulties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
enen发布了新的文献求助10
刚刚
刚刚
1秒前
欣怡高发布了新的文献求助10
1秒前
余繁发布了新的文献求助10
4秒前
阿巴巴巴吧完成签到,获得积分10
4秒前
ahh完成签到 ,获得积分10
4秒前
4秒前
无极微光应助Redback采纳,获得20
4秒前
llsknd发布了新的文献求助10
6秒前
小胖胖发布了新的文献求助10
6秒前
enen完成签到,获得积分20
7秒前
浮游应助甜美乘云采纳,获得10
8秒前
怕黑剑封发布了新的文献求助10
8秒前
wanci应助George采纳,获得30
8秒前
8秒前
Orange应助学霸土豆采纳,获得20
10秒前
科研通AI6应助田字格采纳,获得10
10秒前
Rear21完成签到,获得积分10
10秒前
无聊的老姆完成签到 ,获得积分10
11秒前
怕黑剑封发布了新的文献求助10
13秒前
13秒前
14秒前
灵巧灵萱发布了新的文献求助10
14秒前
专注的问寒应助三七采纳,获得20
14秒前
科目三应助欣怡高采纳,获得10
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
16秒前
mufcyang发布了新的文献求助10
17秒前
18秒前
白晓松发布了新的文献求助10
18秒前
xing发布了新的文献求助10
18秒前
学霸土豆发布了新的文献求助20
20秒前
21秒前
22秒前
蓝天发布了新的文献求助10
23秒前
Rocket完成签到,获得积分10
23秒前
vtfangfangfang完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714