Deep reinforcement learning-based pitch attitude control of a beaver-like underwater robot

强化学习 水下 钢筋 心理学 控制(管理) 机器人 海狸 人工智能 计算机科学 地理 地质学 社会心理学 考古 古生物学
作者
Gang Chen,Zhi-Han Zhao,Yuwang Lu,Chenguang Yang,Huosheng Hu
出处
期刊:Ocean Engineering [Elsevier]
卷期号:307: 118163-118163 被引量:1
标识
DOI:10.1016/j.oceaneng.2024.118163
摘要

The foot paddling of an underwater robot causes continuous changes of the water flow field, which results in the unbalanced hydrodynamic force to change the robot's posture continuously. As the water environment and robot swimming are nonlinear and strongly coupled systems, it is difficult to establish an accurate model. This paper presents an underwater robot, which adopts the synchronous and alternate swimming trajectory of a beaver. Its pitch stability control model is established by using deep reinforcement learning algorithm and its self-learning control system is constructed for stable control of pitch attitude. Experiments are conducted to show that the pitch attitude of the beaver-like underwater robot can be stabilized while maintaining a certain swimming speed. The control method does not need to establish a complex and high-order model of webbed paddling hydrodynamics, which provides a new idea for stable swimming control of underwater robots. This work aims to find an excellent control method for underwater bionic robots. The ocean has the richest natural resources and the most diverse species on Earth. The underwater environment is complex and variable, imposing higher demands on the performance of underwater robots. Increasingly, new concept marine equipment is being researched for scientific exploration, and among these, underwater robots designed based on bionic principles are a growing trend. Currently, most underwater robots still use propellers as their propulsion system. Propellers have advantages such as simple control, high mechanical efficiency, and powerful propulsion, but they also have drawbacks including severe water flow disturbance during operation, high noise, poor concealment, and limited adaptability in complex water environments. Finding a propulsion system with better overall performance is a crucial way to enhance the motion capabilities of underwater robots. Underwater robots often have complex structures, and there are numerous factors influencing their movement in the underwater environment, making fluid dynamics modeling and optimization challenging. Reinforcement learning, as an optimization algorithm, can circumvent the aforementioned difficulties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
盷昀发布了新的文献求助10
刚刚
李娟发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
子暮发布了新的文献求助20
3秒前
科研通AI6应助风轩轩采纳,获得150
3秒前
3秒前
3秒前
科研通AI6应助chen采纳,获得10
3秒前
ww发布了新的文献求助10
4秒前
把握有度发布了新的文献求助10
5秒前
Irene完成签到,获得积分20
6秒前
子车茗应助汤圆采纳,获得10
6秒前
linjiebro完成签到,获得积分10
7秒前
Cc发布了新的文献求助10
7秒前
江生完成签到,获得积分10
8秒前
adi发布了新的文献求助10
8秒前
与非完成签到,获得积分10
8秒前
8秒前
猪猪hero应助bubble采纳,获得10
10秒前
10秒前
小小油应助arizaki7采纳,获得10
10秒前
小小油应助arizaki7采纳,获得10
10秒前
浪子应助arizaki7采纳,获得10
10秒前
stefan完成签到,获得积分10
11秒前
www完成签到,获得积分10
12秒前
12秒前
懒洋洋发布了新的文献求助20
12秒前
Akim应助绛橘色的日落采纳,获得10
12秒前
想美事发布了新的文献求助10
13秒前
科研通AI6应助张瑜采纳,获得10
13秒前
WZT完成签到,获得积分10
13秒前
霖尤完成签到,获得积分20
14秒前
15秒前
15秒前
HCT发布了新的文献求助10
15秒前
15秒前
天真的夜山完成签到,获得积分10
15秒前
han完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608315
求助须知:如何正确求助?哪些是违规求助? 4692918
关于积分的说明 14876115
捐赠科研通 4717325
什么是DOI,文献DOI怎么找? 2544189
邀请新用户注册赠送积分活动 1509187
关于科研通互助平台的介绍 1472836