Deep reinforcement learning-based pitch attitude control of a beaver-like underwater robot

强化学习 水下 钢筋 心理学 控制(管理) 机器人 海狸 人工智能 计算机科学 地理 地质学 社会心理学 考古 古生物学
作者
Gang Chen,Zhi-Han Zhao,Yuwang Lu,Chenguang Yang,Huosheng Hu
出处
期刊:Ocean Engineering [Elsevier]
卷期号:307: 118163-118163 被引量:1
标识
DOI:10.1016/j.oceaneng.2024.118163
摘要

The foot paddling of an underwater robot causes continuous changes of the water flow field, which results in the unbalanced hydrodynamic force to change the robot's posture continuously. As the water environment and robot swimming are nonlinear and strongly coupled systems, it is difficult to establish an accurate model. This paper presents an underwater robot, which adopts the synchronous and alternate swimming trajectory of a beaver. Its pitch stability control model is established by using deep reinforcement learning algorithm and its self-learning control system is constructed for stable control of pitch attitude. Experiments are conducted to show that the pitch attitude of the beaver-like underwater robot can be stabilized while maintaining a certain swimming speed. The control method does not need to establish a complex and high-order model of webbed paddling hydrodynamics, which provides a new idea for stable swimming control of underwater robots. This work aims to find an excellent control method for underwater bionic robots. The ocean has the richest natural resources and the most diverse species on Earth. The underwater environment is complex and variable, imposing higher demands on the performance of underwater robots. Increasingly, new concept marine equipment is being researched for scientific exploration, and among these, underwater robots designed based on bionic principles are a growing trend. Currently, most underwater robots still use propellers as their propulsion system. Propellers have advantages such as simple control, high mechanical efficiency, and powerful propulsion, but they also have drawbacks including severe water flow disturbance during operation, high noise, poor concealment, and limited adaptability in complex water environments. Finding a propulsion system with better overall performance is a crucial way to enhance the motion capabilities of underwater robots. Underwater robots often have complex structures, and there are numerous factors influencing their movement in the underwater environment, making fluid dynamics modeling and optimization challenging. Reinforcement learning, as an optimization algorithm, can circumvent the aforementioned difficulties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wolr发布了新的文献求助30
1秒前
1秒前
1秒前
18322319767完成签到,获得积分10
1秒前
WZY发布了新的文献求助10
1秒前
潮鸣完成签到,获得积分10
1秒前
1秒前
Gu发布了新的文献求助10
2秒前
甜蜜乐松完成签到 ,获得积分10
2秒前
2秒前
加油发布了新的文献求助10
2秒前
orixero应助CGAT采纳,获得10
3秒前
3秒前
乐乐应助trayheep采纳,获得10
4秒前
失眠傲之发布了新的文献求助30
4秒前
4秒前
4秒前
情怀应助chen采纳,获得10
4秒前
5秒前
4000发布了新的文献求助10
5秒前
独特涫完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
二两白茶完成签到,获得积分10
6秒前
DZQ发布了新的文献求助10
7秒前
7秒前
Annabiubiubiu发布了新的文献求助10
7秒前
thousandlong完成签到,获得积分10
8秒前
伶俐的语雪完成签到,获得积分10
8秒前
Sor完成签到,获得积分10
8秒前
8秒前
cili发布了新的文献求助10
8秒前
123完成签到,获得积分10
8秒前
耍酷千亦完成签到 ,获得积分10
9秒前
小二郎应助曲秋白采纳,获得10
9秒前
rusellw发布了新的文献求助10
9秒前
华仔应助洁净的静芙采纳,获得10
9秒前
Sor发布了新的文献求助10
10秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303998
求助须知:如何正确求助?哪些是违规求助? 2938076
关于积分的说明 8486509
捐赠科研通 2612165
什么是DOI,文献DOI怎么找? 1426512
科研通“疑难数据库(出版商)”最低求助积分说明 662691
邀请新用户注册赠送积分活动 647276