Deep reinforcement learning-based pitch attitude control of a beaver-like underwater robot

强化学习 水下 钢筋 心理学 控制(管理) 机器人 海狸 人工智能 计算机科学 地理 地质学 社会心理学 考古 古生物学
作者
Gang Chen,Zhi-Han Zhao,Yuwang Lu,Chenguang Yang,Huosheng Hu
出处
期刊:Ocean Engineering [Elsevier]
卷期号:307: 118163-118163 被引量:1
标识
DOI:10.1016/j.oceaneng.2024.118163
摘要

The foot paddling of an underwater robot causes continuous changes of the water flow field, which results in the unbalanced hydrodynamic force to change the robot's posture continuously. As the water environment and robot swimming are nonlinear and strongly coupled systems, it is difficult to establish an accurate model. This paper presents an underwater robot, which adopts the synchronous and alternate swimming trajectory of a beaver. Its pitch stability control model is established by using deep reinforcement learning algorithm and its self-learning control system is constructed for stable control of pitch attitude. Experiments are conducted to show that the pitch attitude of the beaver-like underwater robot can be stabilized while maintaining a certain swimming speed. The control method does not need to establish a complex and high-order model of webbed paddling hydrodynamics, which provides a new idea for stable swimming control of underwater robots. This work aims to find an excellent control method for underwater bionic robots. The ocean has the richest natural resources and the most diverse species on Earth. The underwater environment is complex and variable, imposing higher demands on the performance of underwater robots. Increasingly, new concept marine equipment is being researched for scientific exploration, and among these, underwater robots designed based on bionic principles are a growing trend. Currently, most underwater robots still use propellers as their propulsion system. Propellers have advantages such as simple control, high mechanical efficiency, and powerful propulsion, but they also have drawbacks including severe water flow disturbance during operation, high noise, poor concealment, and limited adaptability in complex water environments. Finding a propulsion system with better overall performance is a crucial way to enhance the motion capabilities of underwater robots. Underwater robots often have complex structures, and there are numerous factors influencing their movement in the underwater environment, making fluid dynamics modeling and optimization challenging. Reinforcement learning, as an optimization algorithm, can circumvent the aforementioned difficulties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
Hello应助xr采纳,获得10
1秒前
成事在人307完成签到,获得积分10
3秒前
4秒前
4秒前
纯真的芷蝶完成签到,获得积分10
5秒前
打打应助123321采纳,获得10
5秒前
7秒前
Rsoup发布了新的文献求助10
7秒前
葳蕤苍生发布了新的文献求助10
8秒前
8秒前
长天留影完成签到,获得积分10
9秒前
俭朴爆米花完成签到 ,获得积分10
9秒前
Jasper应助安详书蝶采纳,获得10
9秒前
慕青应助xr采纳,获得10
9秒前
doudou完成签到 ,获得积分10
10秒前
pyt发布了新的文献求助30
11秒前
11秒前
李健的小迷弟应助署丽盼采纳,获得20
12秒前
13秒前
lowry发布了新的文献求助10
13秒前
季安发布了新的文献求助10
14秒前
wendy发布了新的文献求助10
14秒前
tuzhihong完成签到,获得积分10
14秒前
15秒前
CipherSage应助xr采纳,获得10
16秒前
16秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
Hello应助科研通管家采纳,获得10
17秒前
JamesPei应助科研通管家采纳,获得10
17秒前
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
17秒前
愉悦完成签到,获得积分10
18秒前
CodeCraft应助被淹死的鱼采纳,获得10
20秒前
20秒前
21秒前
研友_VZG7GZ应助xr采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Adult Development and Aging, 2nd Canadian Edition 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5567073
求助须知:如何正确求助?哪些是违规求助? 4651800
关于积分的说明 14697811
捐赠科研通 4593705
什么是DOI,文献DOI怎么找? 2520372
邀请新用户注册赠送积分活动 1492601
关于科研通互助平台的介绍 1463575