Deep reinforcement learning-based pitch attitude control of a beaver-like underwater robot

强化学习 水下 钢筋 心理学 控制(管理) 机器人 海狸 人工智能 计算机科学 地理 地质学 社会心理学 考古 古生物学
作者
Gang Chen,Zhi-Han Zhao,Yuwang Lu,Chenguang Yang,Huosheng Hu
出处
期刊:Ocean Engineering [Elsevier BV]
卷期号:307: 118163-118163 被引量:1
标识
DOI:10.1016/j.oceaneng.2024.118163
摘要

The foot paddling of an underwater robot causes continuous changes of the water flow field, which results in the unbalanced hydrodynamic force to change the robot's posture continuously. As the water environment and robot swimming are nonlinear and strongly coupled systems, it is difficult to establish an accurate model. This paper presents an underwater robot, which adopts the synchronous and alternate swimming trajectory of a beaver. Its pitch stability control model is established by using deep reinforcement learning algorithm and its self-learning control system is constructed for stable control of pitch attitude. Experiments are conducted to show that the pitch attitude of the beaver-like underwater robot can be stabilized while maintaining a certain swimming speed. The control method does not need to establish a complex and high-order model of webbed paddling hydrodynamics, which provides a new idea for stable swimming control of underwater robots. This work aims to find an excellent control method for underwater bionic robots. The ocean has the richest natural resources and the most diverse species on Earth. The underwater environment is complex and variable, imposing higher demands on the performance of underwater robots. Increasingly, new concept marine equipment is being researched for scientific exploration, and among these, underwater robots designed based on bionic principles are a growing trend. Currently, most underwater robots still use propellers as their propulsion system. Propellers have advantages such as simple control, high mechanical efficiency, and powerful propulsion, but they also have drawbacks including severe water flow disturbance during operation, high noise, poor concealment, and limited adaptability in complex water environments. Finding a propulsion system with better overall performance is a crucial way to enhance the motion capabilities of underwater robots. Underwater robots often have complex structures, and there are numerous factors influencing their movement in the underwater environment, making fluid dynamics modeling and optimization challenging. Reinforcement learning, as an optimization algorithm, can circumvent the aforementioned difficulties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朵朵发布了新的文献求助10
1秒前
英俊的铭应助Decline采纳,获得10
1秒前
louziqi发布了新的文献求助10
2秒前
2秒前
张发胜完成签到,获得积分10
2秒前
2秒前
3秒前
我是老大应助影影采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助20
3秒前
4秒前
蓝桉完成签到,获得积分10
4秒前
聪慧豁完成签到,获得积分10
4秒前
杰小瑞完成签到,获得积分10
5秒前
orixero应助木木康采纳,获得10
5秒前
希格玻色子完成签到,获得积分10
5秒前
超级的画笔完成签到,获得积分10
6秒前
Jing发布了新的文献求助10
6秒前
现代无极发布了新的文献求助10
6秒前
斯文尔阳发布了新的文献求助10
7秒前
7秒前
七安发布了新的文献求助10
7秒前
沉默问夏完成签到 ,获得积分10
7秒前
8秒前
zxw发布了新的文献求助10
8秒前
Yuking完成签到,获得积分10
8秒前
包子完成签到,获得积分10
8秒前
9秒前
9秒前
Ava应助yy采纳,获得20
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
11秒前
长期的爽世完成签到 ,获得积分10
11秒前
从容的夏瑶完成签到,获得积分10
11秒前
12秒前
dazhang15完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001525
求助须知:如何正确求助?哪些是违规求助? 4246659
关于积分的说明 13230789
捐赠科研通 4045478
什么是DOI,文献DOI怎么找? 2213078
邀请新用户注册赠送积分活动 1223305
关于科研通互助平台的介绍 1143569