Computational prediction of phosphorylation sites of SARS-CoV-2 infection using feature fusion and optimization strategies

严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 2019年冠状病毒病(COVID-19) 计算生物学 2019-20冠状病毒爆发 病毒学 特征(语言学) 融合 生物 计算机科学 医学 传染病(医学专业) 疾病 爆发 语言学 哲学 病理
作者
Mumdooh J. Sabir,Majid Rasool Kamli,Ahmed Atef,Alawiah M. Alhibshi,Sherif Edris,Nahid H. Hajarah,Ahmed Bahieldin,Balachandran Manavalan,Jamal S. M. Sabir
出处
期刊:Methods [Elsevier]
标识
DOI:10.1016/j.ymeth.2024.04.021
摘要

SARS-CoV-2's global spread has instigated a critical health and economic emergency, impacting countless individuals. Understanding the virus's phosphorylation sites is vital to unravel the molecular intricacies of the infection and subsequent changes in host cellular processes. Several computational methods have been proposed to identify phosphorylation sites, typically focusing on specific residue (S/T) or Y phosphorylation sites. Unfortunately, current predictive tools perform best on these specific residues and may not extend their efficacy to other residues, emphasizing the urgent need for enhanced methodologies. In this study, we developed a novel predictor that integrated all the residues (STY) phosphorylation sites information. We extracted ten different feature descriptors, primarily derived from composition, evolutionary, and position-specific information, and assessed their discriminative power through five classifiers. Our results indicated that Light Gradient Boosting (LGB) showed superior performance, and five descriptors displayed excellent discriminative capabilities. Subsequently, we identified the top two integrated features have high discriminative capability and trained with LGB to develop the final prediction model, LGB-IPs. The proposed approach shows an excellent performance on 10-fold cross-validation with an ACC, MCC, and AUC values of 0.831, 0.662, 0.907, respectively. Notably, these performances are replicated in the independent evaluation. Consequently, our approach may provide valuable insights into the phosphorylation mechanisms in SARS-CoV-2 infection for biomedical researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呢不辣发布了新的文献求助30
刚刚
传奇3应助bierbia采纳,获得10
1秒前
李繁蕊发布了新的文献求助10
1秒前
风的季节发布了新的文献求助10
1秒前
微笑发布了新的文献求助30
2秒前
2秒前
2秒前
LXL完成签到,获得积分10
3秒前
N_wh完成签到,获得积分10
3秒前
安静的棉花糖完成签到 ,获得积分10
3秒前
闾丘曼安完成签到,获得积分10
3秒前
尼卡应助suy采纳,获得10
3秒前
3秒前
4秒前
思源应助xyz采纳,获得10
4秒前
4秒前
中华有为发布了新的文献求助10
5秒前
5秒前
FashionBoy应助wwww采纳,获得10
5秒前
5秒前
大方嵩发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
猪猪发布了新的文献求助10
7秒前
单薄白薇发布了新的文献求助10
7秒前
豆子完成签到,获得积分10
8秒前
通~发布了新的文献求助10
9秒前
橘子哥完成签到,获得积分10
9秒前
mnm发布了新的文献求助10
10秒前
柔弱凡松发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
11秒前
SHDeathlock发布了新的文献求助50
11秒前
乐乐应助hu970采纳,获得10
11秒前
单薄白薇完成签到,获得积分10
13秒前
陈杰发布了新的文献求助10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762