Computational prediction of phosphorylation sites of SARS-CoV-2 infection using feature fusion and optimization strategies

严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 2019年冠状病毒病(COVID-19) 计算生物学 2019-20冠状病毒爆发 病毒学 特征(语言学) 融合 生物 计算机科学 医学 传染病(医学专业) 疾病 爆发 语言学 哲学 病理
作者
Mumdooh J. Sabir,Majid Rasool Kamli,Ahmed Atef,Alawiah M. Alhibshi,Sherif Edris,Nahid H. Hajarah,Ahmed Bahieldin,Balachandran Manavalan,Jamal S. M. Sabir
出处
期刊:Methods [Elsevier BV]
卷期号:229: 1-8 被引量:4
标识
DOI:10.1016/j.ymeth.2024.04.021
摘要

SARS-CoV-2's global spread has instigated a critical health and economic emergency, impacting countless individuals. Understanding the virus's phosphorylation sites is vital to unravel the molecular intricacies of the infection and subsequent changes in host cellular processes. Several computational methods have been proposed to identify phosphorylation sites, typically focusing on specific residue (S/T) or Y phosphorylation sites. Unfortunately, current predictive tools perform best on these specific residues and may not extend their efficacy to other residues, emphasizing the urgent need for enhanced methodologies. In this study, we developed a novel predictor that integrated all the residues (STY) phosphorylation sites information. We extracted ten different feature descriptors, primarily derived from composition, evolutionary, and position-specific information, and assessed their discriminative power through five classifiers. Our results indicated that Light Gradient Boosting (LGB) showed superior performance, and five descriptors displayed excellent discriminative capabilities. Subsequently, we identified the top two integrated features have high discriminative capability and trained with LGB to develop the final prediction model, LGB-IPs. The proposed approach shows an excellent performance on 10-fold cross-validation with an ACC, MCC, and AUC values of 0.831, 0.662, 0.907, respectively. Notably, these performances are replicated in the independent evaluation. Consequently, our approach may provide valuable insights into the phosphorylation mechanisms in SARS-CoV-2 infection for biomedical researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子唯完成签到,获得积分10
刚刚
刚刚
shinn发布了新的文献求助10
1秒前
1秒前
4秒前
悦耳的柠檬完成签到,获得积分10
6秒前
6秒前
bububusbu发布了新的文献求助10
7秒前
无花果应助年轻的烨华采纳,获得10
8秒前
任侠传发布了新的文献求助10
8秒前
Vxfhfdhkcds发布了新的文献求助10
9秒前
psychedeng完成签到,获得积分10
9秒前
Alice发布了新的文献求助10
12秒前
Ricky发布了新的文献求助10
12秒前
英姑应助年轻的仙人掌采纳,获得10
16秒前
xiaobo完成签到,获得积分10
18秒前
WD发布了新的文献求助10
18秒前
善学以致用应助浑灵安采纳,获得10
20秒前
21秒前
聪慧板凳完成签到,获得积分10
21秒前
22秒前
桐桐应助shinn采纳,获得10
22秒前
李爱国应助任侠传采纳,获得10
23秒前
24秒前
Tangerine完成签到,获得积分10
24秒前
燕燕于飞发布了新的文献求助10
24秒前
不厌完成签到,获得积分10
25秒前
花花发布了新的文献求助10
25秒前
傅英俊完成签到,获得积分10
26秒前
怕孤单的雪兰完成签到,获得积分20
27秒前
28秒前
aaa发布了新的文献求助10
28秒前
28秒前
英姑应助moonbeam采纳,获得10
29秒前
yyauthor发布了新的文献求助10
29秒前
刀锋完成签到,获得积分10
31秒前
31秒前
32秒前
Vxfhfdhkcds完成签到 ,获得积分10
34秒前
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967149
求助须知:如何正确求助?哪些是违规求助? 3512481
关于积分的说明 11163469
捐赠科研通 3247417
什么是DOI,文献DOI怎么找? 1793799
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804450