材料科学
双层
过渡金属
原位
合金
催化作用
离子
纳米技术
化学工程
无机化学
冶金
膜
有机化学
化学
遗传学
工程类
生物
作者
Zhongjie Qiu,Jiayan Wu,Baolin Zhang,Huiyu Song,Zhiming Cui,Zhenxing Liang,Li Du
标识
DOI:10.1002/adfm.202408303
摘要
Abstract Efficient, stable, and inexpensive electrocatalysts are essential to overcome the high overpotential and slow kinetics of the oxygen evolution reaction (OER) process during water electrolysis applications. 2D transition metal carbides (MXene) show great potential in functional heterogeneous interface engineering for electrocatalytic OER. However, it is still a challenge to regulate the interlayer space and realize the heterogeneous layer‐by‐layer ordered embedding for MXene. Herein, a simple hydrothermal‐assisted strategy is proposed to prepare highly conductive Ti 3 C 2 T x MXene supported by synergized Ni 2+ , Co 2+ , and Fe 3+ with bilayer H 2 O, which significantly enlarges the interlayer distances and improves the interlayer ion concentrations. Benefiting from modulated interface chemistry, embedded metal ions undergo multi‐directional in situ growth on the MXene substrate, thereby forming a stable 0D/2D@2D nano‐hybrid material (NiFe/MX‐HT). Combining density functional theory calculations with experiments demonstrates that MXene offers a framework for electron transfer, enhances the exposure of active sites, modulates the electronic structure, and greatly reduces the energy barrier of the rate‐determining step in the process of OER. Thus, NiFe/MX‐HT requires only 230 mV to achieve 10 mA cm −2 and maintains stability even after operating at 100 mA cm −2 for 150 h. This work offers new insights into exploring various functional MXene‐based heterogeneous materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI