亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Assessing the ability of a large language model to score free text medical student clinical notes: A quantitative study (Preprint)

印为红字的 医学 病史 医学教育 心理学 数学教育 外科
作者
Harry Burke,Albert Hoang,Joseph Lopreiato,Heidi B. King,Paul A. Hemmer,Michael Montogmery,Viktoria Gagarin
出处
期刊:JMIR medical education [JMIR Publications Inc.]
标识
DOI:10.2196/56342
摘要

Background: Teaching medical students the skills required to acquire, interpret, apply, and communicate clinical information is an integral part of medical education.A crucial aspect of this process involves providing students with feedback regarding the quality of their free-text clinical notes. Objective:The objective of this project is to assess the ability of ChatGPT 3.5 (ChatGPT) to score medical students' free text history and physical notes.Methods: This is a single institution, retrospective study.Standardized patients learned a prespecified clinical case and, acting as the patient, interacted with medical students.Each student wrote a free text history and physical note of their interaction.ChatGPT is a large language model (LLM).The students' notes were scored independently by the standardized patients and ChatGPT using a prespecified scoring rubric that consisted of 85 case elements.The measure of accuracy was percent correct. Results:The study population consisted of 168 first year medical students.There was a total of 14,280 scores.The standardized patient incorrect scoring rate (error) was 7.2% and the ChatGPT incorrect scoring rate was 1.0%.The ChatGPT error rate was 86% lower than the standardized patient error rate.The standardized patient mean incorrect scoring rate of 85 (SD 74) was significantly higher than the ChatGPT mean incorrect scoring rate of 12 (SD 11), p = 0.002. Conclusions:ChatGPT had a significantly lower error rate than the standardized patients.This suggests that an LLM can be used to score medical students' notes.Furthermore, it is expected that, in the near future, LLM programs will provide real time feedback to practicing physicians regarding their free text notes.Generative pretrained transformer artificial intelligence programs represent an important advance in medical education and in the practice of medicine.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
8秒前
12秒前
19秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
暴躁的奇异果完成签到,获得积分10
1分钟前
1分钟前
领导范儿应助Ming采纳,获得10
1分钟前
2分钟前
2分钟前
CodeCraft应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
George发布了新的文献求助10
2分钟前
2分钟前
Ming发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
Enso完成签到 ,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
阿里给阿里的求助进行了留言
4分钟前
小透明发布了新的文献求助10
4分钟前
4分钟前
SUNny发布了新的文献求助10
4分钟前
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
5分钟前
HYQ完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664501
求助须知:如何正确求助?哪些是违规求助? 4863056
关于积分的说明 15107857
捐赠科研通 4823130
什么是DOI,文献DOI怎么找? 2581958
邀请新用户注册赠送积分活动 1536065
关于科研通互助平台的介绍 1494491