The lattice Boltzmann method for mass transfer of miscible multicomponent mixtures: A review

物理 格子Boltzmann方法 传质 统计物理学 热力学
作者
Ramon G. C. Lourenço,João R. Friggo,Pedro H. Constantino,Frederico W. Tavares
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (6) 被引量:7
标识
DOI:10.1063/5.0205161
摘要

Based on kinetic theory, the lattice Boltzmann method (LBM) is a versatile computational tool extensively applied to simulate diverse problems. It has particularly advanced in addressing general fluid flow, multiphase scenarios, and heat transfer. However, there is a notable gap in research concerning miscible fluids and an urgent need for thorough discussions on mass transfer via LBM in literature, emphasizing alternative modeling over traditional force and passive scalar models. Critical for applications, the understanding of mass transfer in miscible mixtures extends from scientific inquiry to engineering contexts. Hence, this review paper explores the dynamic interplay between mass transfer and fluid dynamics, focusing on the simulation of advection–diffusion problems for miscible non-reactive multicomponent mixtures through LBM. The paper categorizes two broad LBM strategies, the single-fluid and multifluid approaches, sheds light on their distinctive collision modeling techniques, and connects their mesoscale concepts to macroscopic properties and equations, such as viscosity, diffusion coefficient, and the Maxwell–Stefan and Fick equations. In the single-fluid strategy, we discuss the progress of the passive scalar models in mass transfer and the relevance of force models, such as the pseudopotential modeling, for simulation purposes. For multifluids, we detail the single collision technique and the alternative split collision scheme, in which, in this last one, we suggest classifying the models into explicit velocity-difference (Sirovich-based), equilibrium-adapted (Hamel-based), and quasi-equilibrium collision models. By providing a comprehensive overview, this text consolidates information regarding LBM mass transfer modeling, highlights directions for future research, and contributes to establishing a systematic approach for miscible mixtures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小灯完成签到,获得积分10
3秒前
M1完成签到,获得积分10
5秒前
英姑应助花里胡哨hh159采纳,获得10
5秒前
5秒前
momo完成签到 ,获得积分10
7秒前
10秒前
CodeCraft应助当康康采纳,获得10
11秒前
Rondab应助高挑的幻翠采纳,获得10
12秒前
12秒前
领导范儿应助KKKkkkkk采纳,获得10
12秒前
甜妹i怎么会不甜完成签到,获得积分10
13秒前
可爱的函函应助222采纳,获得10
14秒前
1234发布了新的文献求助10
17秒前
18秒前
bkagyin应助zou采纳,获得30
19秒前
科研通AI2S应助积极的帽子采纳,获得10
19秒前
马琛尧完成签到 ,获得积分10
20秒前
Sean发布了新的文献求助10
21秒前
坚强的寒风完成签到,获得积分10
21秒前
zhangzhisenn发布了新的文献求助10
21秒前
23秒前
23秒前
23秒前
23秒前
23秒前
洋洋完成签到,获得积分10
23秒前
马琛尧关注了科研通微信公众号
24秒前
25秒前
27秒前
222发布了新的文献求助10
27秒前
27秒前
眠茶醒药发布了新的文献求助20
28秒前
28秒前
旋律发布了新的文献求助10
28秒前
大饼卷肉发布了新的文献求助10
30秒前
31秒前
当康康发布了新的文献求助10
32秒前
霜刃完成签到,获得积分10
33秒前
CuSO4完成签到,获得积分10
34秒前
军军问问张完成签到,获得积分10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967544
求助须知:如何正确求助?哪些是违规求助? 3512763
关于积分的说明 11165008
捐赠科研通 3247759
什么是DOI,文献DOI怎么找? 1794027
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804528