Integrated machine learning algorithms reveal a bone metastasis-related signature of circulating tumor cells in prostate cancer

前列腺癌 免疫疗法 转移 骨转移 肿瘤科 医学 免疫系统 肿瘤微环境 内科学 癌症 疾病 免疫学
作者
Congzhe Ren,Xiangyu Chen,Xuexue Hao,Changgui Wu,Lijun Xie,Lei Zhu
出处
期刊:Scientific Data [Springer Nature]
卷期号:11 (1) 被引量:1
标识
DOI:10.1038/s41597-024-03551-2
摘要

Abstract Bone metastasis is an essential factor affecting the prognosis of prostate cancer (PCa), and circulating tumor cells (CTCs) are closely related to distant tumor metastasis. Here, the protein-protein interaction (PPI) networks and Cytoscape application were used to identify diagnostic markers for metastatic events in PCa. We screened ten hub genes, eight of which had area under the ROC curve (AUC) values > 0.85. Subsequently, we aim to develop a bone metastasis-related model relying on differentially expressed genes in CTCs for accurate risk stratification. We developed an integrative program based on machine learning algorithm combinations to construct reliable bone metastasis-related genes prognostic index (BMGPI). On the basis of BMGPI, we carefully evaluated the prognostic outcomes, functional status, tumor immune microenvironment, somatic mutation, copy number variation (CNV), response to immunotherapy and drug sensitivity in different subgroups. BMGPI was an independent risk factor for disease-free survival in PCa. The high risk group demonstrated poor survival as well as higher immune scores, higher tumor mutation burden (TMB), more frequent co-occurrence mutation, and worse efficacy of immunotherapy. This study highlights a new prognostic signature, the BMGPI. BMGPI is an independent predictor of prognosis in PCa patients and is closely associated with the immune microenvironment and the efficacy of immunotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
宇文三德发布了新的文献求助10
2秒前
liangao完成签到,获得积分10
2秒前
矮小的柠檬完成签到,获得积分10
3秒前
3秒前
Camellia发布了新的文献求助20
4秒前
CipherSage应助暮葵采纳,获得10
6秒前
6秒前
充电宝应助大侦探皮卡丘采纳,获得10
7秒前
木穹完成签到,获得积分10
9秒前
今后应助宇文三德采纳,获得10
10秒前
睡觉觉了完成签到,获得积分10
10秒前
10秒前
千寻完成签到,获得积分10
10秒前
GakkiSmile完成签到,获得积分10
11秒前
Jing发布了新的文献求助10
11秒前
12秒前
yang发布了新的文献求助20
12秒前
14秒前
额狐狸发布了新的文献求助50
14秒前
颠覆乾坤发布了新的文献求助20
15秒前
英姑应助zzz采纳,获得10
15秒前
16秒前
16秒前
16秒前
17秒前
张张发布了新的文献求助10
17秒前
ANTianxu完成签到 ,获得积分10
18秒前
18秒前
拼搏破茧完成签到,获得积分20
19秒前
20秒前
21秒前
joey发布了新的文献求助10
21秒前
21秒前
高兴的小完成签到,获得积分10
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145542
求助须知:如何正确求助?哪些是违规求助? 2796967
关于积分的说明 7822284
捐赠科研通 2453262
什么是DOI,文献DOI怎么找? 1305570
科研通“疑难数据库(出版商)”最低求助积分说明 627512
版权声明 601464