AlarmGPT: an intelligent alarm analyzer for optical networks using a generative pre-trained transformer

警报 计算机科学 工作流程 变压器 可用性 实时计算 人工智能 人机交互 工程类 数据库 电气工程 电压 航空航天工程
作者
Yidi Wang,Chunyu Zhang,Jin Li,Yue Pang,Zhang Li-fang,Min Zhang,Danshi Wang
出处
期刊:Journal of Optical Communications and Networking [The Optical Society]
卷期号:16 (6): 681-681
标识
DOI:10.1364/jocn.521913
摘要

The proliferating development of optical networks has broadened the network scope and caused a corresponding rise in equipment deployment. This growth potentially results in a significant number of alarms in the case of equipment malfunctions or broken fiber. Managing these alarms efficiently and accurately has always been a critical concern within the research and industry community. The alarm processing workflow typically includes filtration, analysis, and diagnostic stages. In current optical networks, these procedures are often performed by experienced engineers, utilizing their expert knowledge and extensive experience. This method requires considerable human resources and time, as well as demanding proficiency prerequisites. To address this issue, we propose an intelligent alarm analysis assistant, “AlarmGPT,” for optical networks, utilizing a generative pre-trained transformer (GPT) and LangChain. The proposed AlarmGPT exhibits a high level of semantic comprehension and contextual awareness of alarm data, significantly enhancing the model’s ability of interpreting, classifying, and solving alarm events. Through verification of extensive alarm data collected from real optical transport networks (OTNs), the usability of AlarmGPT has been validated in the tasks of alarm knowledge Q&A, alarm compression, alarm priority analysis, and alarm diagnosis. This method has the potential to significantly reduce the labor and time required for alarm processing, while also lowering the experiential requisites incumbent upon network operators.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小迷鹿发布了新的文献求助10
刚刚
萧七七发布了新的文献求助10
1秒前
1秒前
谦让诗霜发布了新的文献求助30
2秒前
3秒前
PHW完成签到,获得积分10
3秒前
zzt发布了新的文献求助10
4秒前
5秒前
伶俐的若剑完成签到,获得积分10
5秒前
慕昊强发布了新的文献求助10
5秒前
6秒前
adinike发布了新的文献求助10
6秒前
搜集达人应助何宛秋采纳,获得10
7秒前
早安完成签到,获得积分10
7秒前
叶世玉发布了新的文献求助10
7秒前
8秒前
见青山发布了新的文献求助10
9秒前
清脆又晴完成签到,获得积分10
10秒前
10秒前
zwj完成签到,获得积分10
10秒前
10秒前
10秒前
852应助146532采纳,获得10
11秒前
wang666完成签到,获得积分20
11秒前
12秒前
61完成签到 ,获得积分10
13秒前
13秒前
心灵美听荷完成签到 ,获得积分10
13秒前
14秒前
14秒前
2309发布了新的文献求助10
14秒前
iamzcd发布了新的文献求助10
14秒前
15秒前
竹羽完成签到 ,获得积分10
15秒前
烟花应助强仔采纳,获得10
15秒前
sy完成签到,获得积分10
15秒前
15秒前
SMIRTGIRL发布了新的文献求助10
16秒前
龍龖龘发布了新的文献求助10
17秒前
17秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3169845
求助须知:如何正确求助?哪些是违规求助? 2820912
关于积分的说明 7932586
捐赠科研通 2481300
什么是DOI,文献DOI怎么找? 1321727
科研通“疑难数据库(出版商)”最低求助积分说明 633347
版权声明 602561