Knowledge Management Perspective of Generative Artificial Intelligence (GenAI)

透视图(图形) 生成语法 人工智能 计算机科学 知识管理
作者
Maryam Alavi,Dorothy E. Leidner,Reza Mousavi
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:1
标识
DOI:10.2139/ssrn.4782875
摘要

In this editorial, revisiting Alavi and Leidner (2001) as a conceptual lens, we consider the organizational implications of generative artificial intelligence (GenAI) from a knowledge management (KM) perspective. We examine how GenAI impacts the processes of knowledge creation, storage, transfer, and application, highlighting both the opportunities and challenges this technology presents. In knowledge creation, GenAI enhances information processing and cognitive functions, fostering individual and organizational learning. However, it also introduces risks like AI bias and reduced human socialization, potentially marginalizing junior knowledge workers. For knowledge storage and retrieval, GenAI's ability to quickly access vast knowledge bases significantly changes employee interactions with KM systems. This raises questions about balancing human-derived tacit knowledge with AI-generated explicit knowledge. The paper also explores GenAI's role in knowledge transfer, particularly in training and cultivating a learning culture. Challenges include an overreliance on AI and risks in disseminating sensitive information. In terms of knowledge application, GenAI is seen as a tool to boost productivity and innovation, but issues like knowledge misapplication, intellectual property, and ethical considerations are critical. Conclusively, the paper argues for a balanced approach to integrating GenAI into KM processes. It advocates for harmonizing GenAI's capabilities with human insights to effectively manage knowledge in contemporary organizations, ensuring both technological advances and ethical responsibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张张发布了新的文献求助10
刚刚
2秒前
所所应助书羽采纳,获得10
2秒前
周芷卉完成签到 ,获得积分10
2秒前
陆海的你发布了新的文献求助10
2秒前
CodeCraft应助欣喜芮采纳,获得10
6秒前
8秒前
8秒前
科研通AI2S应助Luos采纳,获得10
8秒前
9秒前
9秒前
冷傲的xu发布了新的文献求助10
10秒前
hhr完成签到 ,获得积分10
10秒前
雪山飞龙发布了新的文献求助10
10秒前
10秒前
阿健完成签到,获得积分10
11秒前
Qword完成签到,获得积分10
11秒前
12秒前
书羽发布了新的文献求助10
13秒前
谨慎哈密瓜完成签到,获得积分10
14秒前
张章发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
正好发布了新的文献求助10
15秒前
18秒前
ayayaya完成签到 ,获得积分10
19秒前
20秒前
20秒前
21秒前
张章完成签到,获得积分10
21秒前
22秒前
燕儿应助dent强采纳,获得50
23秒前
gujianhua发布了新的文献求助10
25秒前
深情安青应助听风采纳,获得10
25秒前
26秒前
冷傲的xu完成签到,获得积分10
30秒前
浮云完成签到 ,获得积分10
30秒前
33秒前
南北完成签到,获得积分10
33秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387304
求助须知:如何正确求助?哪些是违规求助? 3000155
关于积分的说明 8789582
捐赠科研通 2685932
什么是DOI,文献DOI怎么找? 1471398
科研通“疑难数据库(出版商)”最低求助积分说明 680234
邀请新用户注册赠送积分活动 673020