串联
钙钛矿(结构)
工业化
材料科学
纳米技术
工程物理
业务
工程类
化学工程
经济
复合材料
市场经济
作者
A. Saeed,Liang Wang,Qingqing Miao
标识
DOI:10.1002/solr.202400172
摘要
As a result of an ongoing global dedication, metal‐halide perovskite (PVSK) has proven to be a promising substitute among other developed materials for next‐generation photovoltaic cells due to significantly high efficiency, economical reasons, environmentally friendly processing, and bandgap alterations. In just 12 years, PVSK‐based single cells have achieved an efficiency of 26.1%, reaching single‐crystal silicon solar cells at 27.6% and silicon heterostructure solar cells at 26.8%. PVSK‐based tandem cells also have achieved remarkable attention as a viable candidate for future‐generation photovoltaic technology. Currently, a considerable number of reports are documented as evidence of the efforts to integrate the wide‐bandgap PVSK either with itself (narrow‐bandgap PVSK ([NBG‐PVSK]) or other traditional (NBG) cells, including silicon (Si), copper–indium–gallium–selenide, organic solar cells, cadmium telluride (CdTe), and dye‐sensitized. Thanks to the substantial growth made in the advances of PVSK‐based tandem cells both in the laboratories and in the commercialization sector, this review will systematically elucidate the emergence of PVSK‐based cells, their current status, and applications in tandem configurations. Furthermore, this survey will cover the analysis of different strategies and efforts to achieve cutting‐edge photovoltaic technology. Finally, the commercialization of different PVSK‐based tandem technologies and their prospects are analyzed.
科研通智能强力驱动
Strongly Powered by AbleSci AI