人工智能
模式识别(心理学)
高光谱成像
特征(语言学)
计算机科学
核(代数)
符号
数学
组合数学
语言学
算术
哲学
作者
Jinhui Hou,Zhiyu Zhu,Junhui Hou,Hui Liu,Huanqiang Zeng,Deyu Meng
标识
DOI:10.1109/tpami.2024.3399753
摘要
In this paper, we study the problem of efficiently and effectively embedding the high-dimensional spatio-spectral information of hyperspectral (HS) images, guided by feature diversity. Specifically, based on the theoretical formulation that feature diversity is correlated with the rank of the unfolded kernel matrix, we rectify 3D convolution by modifying its topology to enhance the rank upper-bound. This modification yields a rank-enhanced spatial-spectral symmetrical convolution set (ReS
科研通智能强力驱动
Strongly Powered by AbleSci AI