亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting collision cases at unsignalized intersections using EEG metrics and driving simulator platform

随机森林 交叉口(航空) 脑电图 碰撞 计算机科学 多层感知器 驾驶模拟器 人工智能 模拟 毒物控制 机器学习 模式识别(心理学) 人工神经网络 工程类 运输工程 计算机安全 心理学 精神科 环境卫生 医学
作者
Xinran Zhang,Xuedong Yan
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:180: 106910-106910 被引量:26
标识
DOI:10.1016/j.aap.2022.106910
摘要

Unsignalized intersection collision has been one of the most dangerous accidents in the world. How to identify road hazards and predict the potential intersection collision ahead are challenging problems in traffic safety. This paper studies the feasibility of EEG metrics to forecast road hazards and presents an improved neural network model to predict intersection collision based on EEG metrics and driving behavior. It is demonstrated that EEG metrics show significant differences between collision and non-collision cases. It indicates that EEG metrics can serve as effective indicators to predict the collision probability. The drivers with higher relative power in fast frequency band (alpha and beta), lower relative power in slow frequency band (delta and theta) are more likely to have conflicts. The prediction using three machine learning models (Multi-layer perceptron (MLP), Logistic regression (LR) and Random forest (RF)) based on three input datasets (only EEG metrics, only driving behavior and combined EEG metrics with driving behavior) are compared. The results show that for single time point prediction, MLP model has the highest accuracy among three machine learning models. The model solely based on EEG metrics datasets has higher accuracy than driving behavior as well as combined datasets. However, for multi-time point prediction, the accuracy of MLP is only 73.9%, worse than LR and RF. We improved the MLP model by adding attention mechanism layer and using random forest model to select important features. As a consequence, the accuracy is greatly improved and reaches 88%. This study demonstrates the importance and feasibility of EEG signals to identify unsafe drivers ahead. The improved neural network model can be helpful to reduce intersection accidents and improve traffic safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
樱桃猴子完成签到,获得积分10
5秒前
归海浩阑完成签到,获得积分10
6秒前
徐徐徐发布了新的文献求助10
6秒前
swordlee完成签到,获得积分10
7秒前
10秒前
11秒前
非泥完成签到,获得积分10
15秒前
jqy发布了新的文献求助10
18秒前
yuani111应助碧蓝帅哥采纳,获得10
20秒前
swordlee发布了新的文献求助10
24秒前
24秒前
Jiro完成签到,获得积分10
24秒前
小脚丫完成签到 ,获得积分10
26秒前
棠梨子完成签到,获得积分10
28秒前
asdfqaz完成签到 ,获得积分10
30秒前
Linn_Z发布了新的文献求助10
33秒前
烟花应助棖0921采纳,获得10
37秒前
hhh完成签到 ,获得积分10
43秒前
hhh关注了科研通微信公众号
46秒前
大模型应助科研通管家采纳,获得10
49秒前
鑫xx完成签到 ,获得积分10
50秒前
葡紫明完成签到 ,获得积分10
55秒前
研友_VZG7GZ应助Zhou采纳,获得10
1分钟前
Zhou完成签到,获得积分10
1分钟前
1分钟前
1分钟前
惊奇先生1发布了新的文献求助10
1分钟前
Zhou发布了新的文献求助10
1分钟前
1分钟前
Honghao发布了新的文献求助10
1分钟前
1分钟前
小助发布了新的文献求助10
1分钟前
万事屋完成签到 ,获得积分10
1分钟前
小助关注了科研通微信公众号
1分钟前
默默靖琪完成签到,获得积分10
2分钟前
2分钟前
木棉完成签到,获得积分20
2分钟前
Rn完成签到 ,获得积分10
2分钟前
认真搞科研啦完成签到,获得积分10
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555687
求助须知:如何正确求助?哪些是违规求助? 3131341
关于积分的说明 9390653
捐赠科研通 2831010
什么是DOI,文献DOI怎么找? 1556280
邀请新用户注册赠送积分活动 726483
科研通“疑难数据库(出版商)”最低求助积分说明 715803