On Improving Bounding Box Representations for Oriented Object Detection

最小边界框 计算机科学 稳健性(进化) 跳跃式监视 探测器 歪斜 目标检测 算法 数据挖掘 人工智能 模式识别(心理学) 图像(数学) 生物化学 电信 基因 化学
作者
Yiyang Yao,Gong Cheng,Guangxing Wang,Shengyang Li,Peicheng Zhou,Xingxing Xie,Junwei Han
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-11 被引量:37
标识
DOI:10.1109/tgrs.2022.3231340
摘要

Detecting objects in remote sensing images (RSIs) using oriented bounding boxes (OBBs) is flourishing but challenging, wherein the design of OBB representations is the key to achieving accurate detection. In this article, we focus on two issues that hinder the performance of the two-stage oriented detectors: 1) the notorious boundary discontinuity problem, which would result in significant loss increases in boundary conditions, and 2) the inconsistency in regression schemes between the two stages. We propose a simple and effective bounding box representation by drawing inspiration from the polar coordinate system and integrate it into two detection stages to circumvent the two issues. The first stage specifically initializes four quadrant points as the starting points of the regression for producing high-quality oriented candidates without any postprocessing. In the second stage, the final localization results are refined using the proposed novel bounding box representation, which can fully release the capabilities of the oriented detectors. Such consistency brings a good trade-off between accuracy and speed. With only flipping augmentation and single-scale training and testing, our approach with ResNet-50-FPN harvests 76.25% mAP on the DOTA dataset with a speed of up to 16.5 frames/s, achieving the best accuracy and the fastest speed among the mainstream two-stage oriented detectors. Additional results on the DIOR-R and HRSC2016 datasets also demonstrate the effectiveness and robustness of our method. The source code is publicly available at https://github.com/yanqingyao1994/QPDet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LLL完成签到,获得积分10
1秒前
Green完成签到,获得积分10
4秒前
jie完成签到,获得积分10
4秒前
4秒前
小钱全完成签到,获得积分10
4秒前
危机的慕卉完成签到 ,获得积分10
5秒前
所所应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
tramp应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
6秒前
大模型应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
7秒前
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
小二郎应助科研通管家采纳,获得30
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
GreenT完成签到,获得积分10
7秒前
仙都丽娜完成签到,获得积分10
8秒前
翁笑柳完成签到,获得积分10
9秒前
华仔应助mm采纳,获得10
9秒前
华仔应助minggalaxy007采纳,获得10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965864
求助须知:如何正确求助?哪些是违规求助? 3511176
关于积分的说明 11156785
捐赠科研通 3245809
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804278