On Improving Bounding Box Representations for Oriented Object Detection

最小边界框 计算机科学 稳健性(进化) 跳跃式监视 探测器 歪斜 目标检测 算法 数据挖掘 人工智能 模式识别(心理学) 图像(数学) 生物化学 电信 基因 化学
作者
Yiyang Yao,Gong Cheng,Guangxing Wang,Shengyang Li,Peicheng Zhou,Xingxing Xie,Junwei Han
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-11 被引量:37
标识
DOI:10.1109/tgrs.2022.3231340
摘要

Detecting objects in remote sensing images (RSIs) using oriented bounding boxes (OBBs) is flourishing but challenging, wherein the design of OBB representations is the key to achieving accurate detection. In this article, we focus on two issues that hinder the performance of the two-stage oriented detectors: 1) the notorious boundary discontinuity problem, which would result in significant loss increases in boundary conditions, and 2) the inconsistency in regression schemes between the two stages. We propose a simple and effective bounding box representation by drawing inspiration from the polar coordinate system and integrate it into two detection stages to circumvent the two issues. The first stage specifically initializes four quadrant points as the starting points of the regression for producing high-quality oriented candidates without any postprocessing. In the second stage, the final localization results are refined using the proposed novel bounding box representation, which can fully release the capabilities of the oriented detectors. Such consistency brings a good trade-off between accuracy and speed. With only flipping augmentation and single-scale training and testing, our approach with ResNet-50-FPN harvests 76.25% mAP on the DOTA dataset with a speed of up to 16.5 frames/s, achieving the best accuracy and the fastest speed among the mainstream two-stage oriented detectors. Additional results on the DIOR-R and HRSC2016 datasets also demonstrate the effectiveness and robustness of our method. The source code is publicly available at https://github.com/yanqingyao1994/QPDet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
YMM发布了新的文献求助10
2秒前
2秒前
华仔应助BSDL采纳,获得10
3秒前
刺猬完成签到,获得积分10
3秒前
友好绮兰完成签到,获得积分10
3秒前
5秒前
5秒前
6秒前
6秒前
6秒前
伏月八发布了新的文献求助10
7秒前
lanan发布了新的文献求助10
8秒前
所所应助研友_Z1WvKL采纳,获得10
8秒前
zzz发布了新的文献求助20
9秒前
Hodge应助不喝纯牛奶采纳,获得10
9秒前
李嘉琪发布了新的文献求助10
10秒前
活在当下发布了新的文献求助10
12秒前
852应助熊有鹏采纳,获得10
12秒前
12秒前
12秒前
上官若男应助MichaelQin采纳,获得10
14秒前
细雨带风吹完成签到,获得积分10
14秒前
李健的小迷弟应助啾啾采纳,获得10
14秒前
Sci工作者完成签到,获得积分20
14秒前
丰知然应助滴滴哒哒采纳,获得10
15秒前
Sci工作者发布了新的文献求助10
17秒前
共享精神应助两滴水的云采纳,获得20
18秒前
傻傻的凌寒完成签到,获得积分10
18秒前
111完成签到,获得积分20
19秒前
活在当下完成签到,获得积分10
19秒前
19秒前
Tmh完成签到,获得积分10
21秒前
21秒前
Merry完成签到,获得积分10
21秒前
Frank完成签到,获得积分10
22秒前
2105完成签到,获得积分20
23秒前
伏月八完成签到,获得积分10
23秒前
慕青应助KOPLT采纳,获得10
23秒前
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3302191
求助须知:如何正确求助?哪些是违规求助? 2936670
关于积分的说明 8478573
捐赠科研通 2610467
什么是DOI,文献DOI怎么找? 1425261
科研通“疑难数据库(出版商)”最低求助积分说明 662323
邀请新用户注册赠送积分活动 646517