Hybrid Attention and Motion Constraint for Anomaly Detection in Crowded Scenes

自编码 计算机科学 异常检测 人工智能 模式识别(心理学) 特征(语言学) 约束(计算机辅助设计) 编码(内存) 代表(政治) 推论 编码器 计算机视觉 人工神经网络 数学 操作系统 法学 哲学 政治 语言学 政治学 几何学
作者
Xinfeng Zhang,Jinpeng Fang,Baoqing Yang,Shuhan Chen,Bin Li
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (5): 2259-2274 被引量:2
标识
DOI:10.1109/tcsvt.2022.3221622
摘要

Crowds often appear in surveillance videos in public places, from which anomaly detection is of great importance to public safety. Since the abnormal cases are rare, variable and unpredictable, autoencoders with encoder and decoder structures using only normal samples have become a hot topic among various approaches for anomaly detection. However, since autoencoders have excessive generalization ability, they can sometimes still reconstruct abnormal cases very well. Recently, some researchers construct memory modules under normal conditions and use these normal memory items to reconstruct test samples during inference to increase the reconstruction errors for anomalies. However, in practice, the errors of reconstructing normal samples with the memory items often increase as well, which makes it still difficult to distinguish between normal and abnormal cases. In addition, the memory-based autoencoder is usually available only in the specific scene where the memory module is constructed and almost loses the prospect of cross-scene applications. We mitigate the overgeneralization of autoencoders from a different perspective, namely, by reducing the prediction errors for normal cases rather than increasing the prediction errors for abnormal cases. To this end, we propose an autoencoder based on hybrid attention and motion constraint for anomaly detection. The hybrid attention includes the channel attention used in the encoding process and spatial attention added to the skip connection between the encoder and decoder. The hybrid attention is introduced to reduce the weight of the feature channels and regions representing the background in the feature matrix, which makes the autoencoder features more focused on optimizing the representation of the normal targets during training. Furthermore, we introduce motion constraint to improve the autoencoder’s ability to predict normal activities in crowded scenes. We conduct experiments on real-world surveillance videos, UCSD, CUHK Avenue, and ShanghaiTech datasets. The experimental results indicate that the prediction errors of the proposed method for frequent normal crowd activities are smaller than those of other approaches, which increases the gap between the prediction errors for normal frames and the prediction errors for abnormal frames. In addition, the proposed method does not depend on a specific scene. Therefore, it balances good anomaly detection performance and strong cross-scene capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mount完成签到,获得积分10
刚刚
casey完成签到,获得积分10
刚刚
loey完成签到,获得积分10
4秒前
深情安青应助诸葛雪兰采纳,获得10
5秒前
ZBY关闭了ZBY文献求助
5秒前
nini完成签到,获得积分10
7秒前
幸福的寄松完成签到,获得积分10
8秒前
张帅完成签到,获得积分10
8秒前
9秒前
11秒前
万能图书馆应助wsdsd采纳,获得10
12秒前
11111发布了新的文献求助10
12秒前
13秒前
13秒前
清秀大方嘤嘤猴完成签到,获得积分10
13秒前
14秒前
14秒前
小马甲应助yhy采纳,获得10
14秒前
15秒前
一笑倾城发布了新的文献求助10
17秒前
Jasper应助科研通管家采纳,获得10
18秒前
fillippo99应助科研通管家采纳,获得20
18秒前
18秒前
华仔应助科研通管家采纳,获得10
18秒前
CipherSage应助科研通管家采纳,获得10
18秒前
顾矜应助科研通管家采纳,获得10
18秒前
情怀应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
19秒前
21秒前
唔西迪西发布了新的文献求助10
21秒前
wgy发布了新的文献求助10
23秒前
mawanyu发布了新的文献求助10
23秒前
dxd小郭发布了新的文献求助10
25秒前
唔西迪西完成签到,获得积分10
27秒前
11111发布了新的文献求助10
30秒前
wgy完成签到,获得积分10
33秒前
vanshaw.vs发布了新的文献求助10
33秒前
37秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464359
求助须知:如何正确求助?哪些是违规求助? 3057701
关于积分的说明 9058044
捐赠科研通 2747703
什么是DOI,文献DOI怎么找? 1507609
科研通“疑难数据库(出版商)”最低求助积分说明 696564
邀请新用户注册赠送积分活动 696148